

© 2011 Veryant. All rights reserved.

Cross-language Software Development with isCOBOL

Evolve

The Java Programming Language

Cross-language Software Development with isCOBOL Evolve

 Page 2 of 42

Copyright © 2011 Veryant.

925 Vista Park Drive, Pittsburgh, PA 15205

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use,

copying, distribution and recompilation. No part of this product or document may be reproduced in any

form by any means without prior written authorization of Veryant and its licensors, if any.

isCOBOL and Veryant are trademarks or registered trademarks of Veryant in the U.S. and other countries. All

other marks are property of their respective owners.

Cross-language Software Development with isCOBOL Evolve

 Page 3 of 42

Table of Contents

Introduction .. 5

Why isCOBOL? ... 6

What Makes isCOBOL an Ideal Choice for Use with the Java Language? 7

True Java Class Output ... 7

Natural Support of Object-Oriented COBOL .. 7

isCOBOL Threads Are True Threads ... 7

RDBMS access via JDBC ... 8

Integrated ESQL Compiler .. 8

Veryant Database Bridge .. Error! Bookmark not defined.

isCOBOL Compiler Architecture .. 10

Two-step Process .. 10

Outputs POJOs (Plain Old Java Objects) ... 10

No Native Dependencies Required .. 11

Procedural Programs (i.e. PROGRAM-ID) .. 11

Example of Java Class Produced from a COBOL Subprogram .. 11

Object-oriented Programs (i.e. CLASS-ID) .. 13

Example of Java Class Produced from a COBOL Class ... 13

Defining COBOL Classes in Java Packages Using Only Java Types ... 15

Example of a Java Class Using Only Java Types ... 15

Calling COBOL from Java ... 17

isCOBOL generates a main() method in the Java class.. 17

Calling Existing Programs with com.iscobol.java.IsCobol .. 17

com.iscobol.types.* classes ... 17

Samples Included with isCOBOL ... 18

Java Code Calling an Existing COBOL Program ... 18

Java Code Using a COBOL Object ... 18

Access COBOL Files Natively From Java Code with COBFILEIO ... 19

Developing and Debugging COBOL and Java Code Together .. 20

Cross-language Software Development with isCOBOL Evolve

 Page 4 of 42

Example Steps for Setting Up Eclipse for Cross-language Development .. 20

Using Other Java Debuggers Such as JSwat and jdb ... 21

Veryant JISAM ... 22

JISAM Limits .. 22

JUTIL Options ... 22

COBFILEIO ... 23

Usage: .. 23

Example Steps .. 24

How do you take your Java? - An Article ... 33

A little dash or a splash of COBOL can make for the perfect mix .. 33

Common Business Oriented Language – 50 Years Young .. 33

Originally called Green, then changed to Oak, finally known as Java – 15 years mature 33

COBOL with A Dash of Java ... 34

Example of COBOL Using Java Packages ... 35

Java with a Splash of COBOL .. 36

Example of COBOL Calling Java Classes ... 36

Example of Java Calling a COBOL Class .. 37

Conclusion... 40

Appendix A ... 41

Quick FAQ .. 41

Cross-language Software Development with isCOBOL Evolve

 Page 5 of 42

Introduction

COBOL is one of the oldest programming languages with hundreds of billions of lines of

code still in use and hundreds of thousands of programmers worldwide.

The benefits of COBOL are numerous and can be found listed in many publications

spanning over 50 years that COBOL has been in existence. Here are some facts that are

especially relevant when considering whether to replace, rewrite or rejuvenate existing

COBOL programs:

• COBOL's verbosity has made it the most readable, understandable and self-

documenting programming language in use today. And this readability becomes

more valuable the older a program becomes.

• The COBOL standard is not owned or controlled by any particular COBOL vendor.

COBOL vendors do their best to comply with one and the same standard. This

makes the COBOL source code itself very portable, and ensures that the COBOL

language can be used on a wide variety of hardware platforms and operating

systems.

• The COBOL standard stipulates that definitions of external references be made in

the Environment Division. This simplifies platform changes.

• COBOL has evolved to support both procedural and object-oriented programming

paradigms, and the changes have been incorporated into the COBOL standard.

The COBOL language is constantly evolving to match the pace of hardware and

software technology innovations.

It is critically important for COBOL development systems to keep up with the very latest

technologies and for COBOL vendors to create multiple paths for COBOL to follow into the

future.

This paper discusses isCOBOL Evolve software's internal and interface designs that make

isCOBOL the ideal choice for rejuvenating existing COBOL programs by integrating and

interoperating with applications and components written in the Java programming

language and created for the Java platform.

Cross-language Software Development with isCOBOL Evolve

 Page 6 of 42

Why isCOBOL?

isCOBOL software's purpose is to enable companies to retain current COBOL investments

while simultaneously providing a path forward to take full advantage of the openness,

portability, and power of Java technology without retraining or rewriting.

With isCOBOL, you no longer need to worry about having to replace COBOL ‘someday,’

instead isCOBOL provides the flexibility to choose the best programming language for the

particular job at hand. If it makes business sense, developers can transition from COBOL

programming to Java programming over time.

isCOBOL gives you the ability to keep your COBOL assets even if you choose Java as your

programming language now or at some time in the future. This protects existing COBOL

investments while opening the door to new opportunities available with the Java platform.

If you choose to further extend COBOL applications with Java language and technologies

the path is made easier with isCOBOL. Since isCOBOL preserves current COBOL programs,

the transition to Java can be done at your desired pace.

At Veryant we believe that it is the COBOL programmers who have the best understanding

of the application structure, flow and logic. After transitioning to isCOBOL it remains true

that COBOL is the best language to use in order to fix bugs and make small enhancements

to the COBOL application because these types of changes require inline modifications to

the application source code.

Developers using isCOBOL leverage current COBOL skills and can move to the Java

platform without ever needing to know how to program in the Java language. With

isCOBOL all development and debug processes can be performed using the COBOL

language.

Cross-language Software Development with isCOBOL Evolve

 Page 7 of 42

What Makes isCOBOL an Ideal Choice for Use with the Java Language?

True Java Class Output

The isCOBOL Compiler produces true Java classes. This means that there is no

interoperability layer or additional mechanism needed between isCOBOL and Java

components. Thus:

• An isCOBOL program can use Java classes as if they were written in COBOL.

• A Java program can use isCOBOL classes as if they were written in the Java

programming language.

• Object-Oriented COBOL can be used to extend (subclass, derive from) a Java class.

• The Java programming language can be used to extend an isCOBOL class.

Natural Support of Object-Oriented COBOL

The isCOBOL Compiler naturally supports Object-Oriented COBOL. Object-Oriented

COBOL provides a superior way to consume or produce objects such as those used with

Web Services, Java Packages, .NET, ActiveX, OLE, and COM.

• Through object-oriented syntax, COBOL programs can use objects written in the

Java language, and also create objects that can be used by Java programmers as if

those objects were written using the Java language.

isCOBOL Threads Are True Threads

isCOBOL delivers true multithreading, as opposed to emulated threads, when running a

COBOL application.

• During runtime, COBOL applications take full advantage of multiple and multi-

core CPUs by letting the computer hardware divide up the work and execute it in

parallel processing.

• This allows sorting and all other operations to take place on multiple threads.

Cross-language Software Development with isCOBOL Evolve

 Page 8 of 42

• Thread switching is smooth and there is no need to configure, program, or be

concerned about thread priorities or the thread switcher. Long operations do not

block thread switching.

RDBMS Access via JDBC

The isCOBOL Compiler provides portable RDBMS access via JDBC. This simplifies

deployment by eliminating the extra C API layer and the requirement to dynamically load

or re-link the runtime with special libraries from the database vendor when deploying,

upgrading or moving between database vendors.

• Embedded SQL is converted directly into calls to the JDBC driver.

• No knowledge of the C static or dynamic linker is required.

• Any supported RDBMS can be used without code changes or recompiling.

• JDBC driver interface to the database is provided by and supported by the

database vendor.

Integrated ESQL Compiler

ESQL compiler capabilities are integrated in the isCOBOL Compiler so it is unnecessary to

use a pre-compiler such as Pro*COBOL.

• There are no additional set up requirements, no need for complicated build scripts

and only one set of source files to manage, thus increasing available disk space.

• The debugger shows the original source code, rather than code generated by a

pre-compiler.

• Without a separate pre-compiler requirement, there is less software that has to be

maintained.

Veryant Database Bridge

With the Veryant Database Bridge there is no need to change COBOL or to learn ESQL to

access a RDBMS. Veryant Database Bridge technology takes the Extended File Description

(EFD*) for a data file and generates a file handler with embedded SQL in COBOL. When you

run an application, COBOL ISAM INDEXED file I/O operations on a data file are routed

through the generated COBOL/ESQL interface which accesses the RDBMS via JDBC.

Cross-language Software Development with isCOBOL Evolve

 Page 9 of 42

• This method often proves better than middleware interface layers, because it

opens access to the COBOL/ESQL source code which becomes part of the

application.

• There is no additional layer between the application and the JDBC driver. Support

for the SQL and JDBC driver comes directly from the database vendor.

• Veryant Database Bridge automatically inherits all of the benefits of the

integrated ESQL compiler capabilities in the isCOBOL Compiler.

* EFD - Extended File Description XML file produced by the compiler -efd option

Cross-language Software Development with isCOBOL Evolve

 Page 10 of 42

isCOBOL Compiler Architecture

At the core of Veryant's products is the isCOBOL Compiler. The isCOBOL Compiler converts

COBOL source code into intermediate Java source code and then feeds that to the Java

compiler to produce Java bytecode objects (i.e. .class files).

The isCOBOL Compiler was designed as a "pluggable" architecture so that code generators

could be created for any native or virtual machine in the future. Because of the Java

platform's portability Veryant chose to first create a code generator and runtime

framework for the Java Virtual Machine (JVM).

Thus, Veryant's first compiler, the isCOBOL Compiler, translates COBOL source code into

Java classes that can then be executed by the JVM. The isCOBOL compiler outputs Java

bytecode instead of pseudo code (pcode) or native objects.

Two-step Process

To accomplish this task the isCOBOL Compiler follows a two-step process that is

completely transparent to the developer:

1. The compiler translates the COBOL source code into intermediate Java source

code.

2. This intermediate source code is then automatically fed into the Java compiler

which produces Java bytecode objects (.class files).

Note: although the Java source code created in step 1 is temporary intermediate output and is

not stored on disk, a COBOL program can be compiled with a special “-jj” option if an

organization desires to retain this code.

Outputs POJOs (Plain Old Java Objects)

After compilation the COBOL programs are Java classes, POJOs (Plain Old Java Objects), in

standard Java .class files and can be used like any other Java classes that were created

using the Java programming language. The object classes are indistinguishable from

classes programmed in the Java language because they are produced by compiling actual

Java language source code.

Cross-language Software Development with isCOBOL Evolve

 Page 11 of 42

The advantage of this technology approach is that the isCOBOL Compiler produces Java

source code that functions exactly the same as the original COBOL source code, even

though COBOL, being an early language, supports non-structured programming and has

elements that do not have Java language equivalents such as GO TO, PERFORM THRU, and

NEXT SENTENCE.

No Native Dependencies Required

At run-time the Java classes produced by the isCOBOL Compiler do not depend on

machine-native object libraries or executables (i.e. other than the JVM) unless the COBOL

program itself calls native objects such as those containing functions programmed using

the C language.

isCOBOL applications are able to run on any device supporting the Java Virtual Machine

(JVM) - from mainframes to mobile phones. This includes the application logic, data access

and user interface.

Procedural Programs (i.e. PROGRAM-ID)

The isCOBOL Compiler transforms each procedural COBOL program (i.e. with PROGRAM-

ID) into a Java class, each paragraph and entry-point into a Java class method, each

LINKAGE SECTION item into a Java class method parameter.

isCOBOL also provides a COBOL types package so that Java programmers can access

COBOL data types with set and get accessor methods that automatically convert between

COBOL and Java types.

isCOBOL compiles a traditional COBOL program source file named myprog.cbl into a Java

class named MYPROG with a main() method that takes the program's PROCEDURE

DIVISION USING parameters (LINKAGE SECTION items) as Java type parameters defined in

the isCOBOL types package.

Example of Java Class Produced from a COBOL Subprogram

Take, for example, a program that returns the sum of two numbers:

add2.cbl:
 IDENTIFICATION DIVISION.
 PROGRAM-ID. ADD2.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

Cross-language Software Development with isCOBOL Evolve

 Page 12 of 42

 01 SUM PIC 9(5).
 LINKAGE SECTION.
 01 ADDEND-1 PIC 9(5).
 01 ADDEND-2 PIC 9(5).
 PROCEDURE DIVISION USING ADDEND-1 ADDEND-2 RETURNING SUM.
 MAIN.

 MOVE ADDEND-1 TO SUM.
 ADD ADDEND-2 TO SUM.
 GOBACK.

The Java class produced by the isCOBOL Compiler for this program has the following

definition:

Note: Code has been removed for brevity in the following Java source examples

ADD2.java:

public class ADD2
implements com.iscobol.rts.IscobolClass, com.iscobol.rts.IscobolCall {
 public static void main(String args[]) {
 // ...
 com.iscobol.rts.IscobolCall theProgram = new ADD2();
 exitCode = ((CobolVar)

theProgram.call(linkage)).toint();
 System.exit(exitCode);

 }
 }

 private com.iscobol.types.NumericVar SUM;
 public com.iscobol.types.NumericVar ADDEND_1;
 public com.iscobol.types.NumericVar ADDEND_2;

 public Object call(Object argv[]) {
 // ...
 try {
 perform(1, 1);
 } catch (GobackException ex$) {
 if (ex$.getReturnValue() != null)
 return ex$.getReturnValue();
 } finally {
 }
 return SUM;
 }

 public void perform(int begin, int end) {
 boolean goOn = true;
 while (goOn) {
 try {

Cross-language Software Development with isCOBOL Evolve

 Page 13 of 42

 switch (begin) {
 case 1:
 if ((begin = MAIN()) > 0)
 break;
 if (end == 1) {
 goOn = false;
 break;
 }
 default:
 goOn = false;
 break;
 }
 } catch (GotoException e) {
 begin = e.parNum;
 } catch (ExitSectionException e) {
 goOn = false;
 }
 }
 }

 final private int MAIN() throws GotoException {
 ADDEND_1.moveTo(SUM);
 SUM.addToMe(ADDEND_2.tolong());
 throw GobackException.go;
 return 0;
 }

}

Object-Oriented Programs (i.e. CLASS-ID)

The isCOBOL Compiler transforms each object-oriented COBOL program (i.e. with CLASS-

ID) into a Java class translating each COBOL class method (i.e. METHOD-ID) to a Java class

method and each COBOL class variable into a Java class variable.

COBOL class members defined in the FACTORY paragraph are translated to Java static

class members. COBOL class members defined in the OBJECT paragraph are translated to

Java non-static class members.

Example of Java Class Produced from a COBOL Class

Take, for example, a COBOL object class that has a factory method to convert a string to

uppercase.

ConvertCase.cbl:

 IDENTIFICATION DIVISION.

Cross-language Software Development with isCOBOL Evolve

 Page 14 of 42

 CLASS-ID. CONVERTCASE as "ConvertCase".
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 IDENTIFICATION DIVISION.
 FACTORY.
 PROCEDURE DIVISION.
 IDENTIFICATION DIVISION.
 METHOD-ID. TOUPPER AS "toUpper".
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 RET-VAL PIC X ANY LENGTH.
 LINKAGE SECTION.
 01 IN-PARAM PIC X ANY LENGTH.
 PROCEDURE DIVISION USING IN-PARAM RETURNING RET-VAL.
 START-METHOD.
 MOVE IN-PARAM TO RET-VAL.
 CALL "C$TOUPPER" USING RET-VAL.
 END METHOD.

 END FACTORY.

The Java class produced by the isCOBOL Compiler for this program has the following

definition:

ConvertCase.java:

import com.iscobol.rts.*;
import com.iscobol.types.*;

public class ConvertCase
implements com.iscobol.rts.IscobolClass {
 // ...

public static com.iscobol.types.PicX

toUpper(com.iscobol.types.PicX IN_PARAM) {
 // ...
 }

}

The class above could be used from COBOL as follows:

TEST.cbl:

 ID DIVISION.
 PROGRAM-ID. TEST.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 REPOSITORY.

Cross-language Software Development with isCOBOL Evolve

 Page 15 of 42

 CLASS CONVERTCASE AS "ConvertCase".
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 ITEM-1 PIC X ANY LENGTH.
 PROCEDURE DIVISION.
 MOVE CONVERTCASE::"toUpper"("abcdefghij") TO ITEM-1.
 DISPLAY ITEM-1.
 STOP RUN.

Defining COBOL Classes in Java Packages Using Only Java Types

Example of a Java Class Using Only Java Types

Often it is useful to define the COBOL class in a package and use only Java types in its

public interface. For example,

 IDENTIFICATION DIVISION.
 CLASS-ID. JCONVERTCASE as "com.mycompany.JConvertCase".
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 REPOSITORY.
 CLASS JSTRING AS "java.lang.String"
 .
 IDENTIFICATION DIVISION.
 FACTORY.
 PROCEDURE DIVISION.
 IDENTIFICATION DIVISION.
 METHOD-ID. TOUPPER AS "toUpper".
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 RET-VAL OBJECT REFERENCE JSTRING.
 01 TEMP-ITEM-1 PIC X ANY LENGTH.
 LINKAGE SECTION.
 01 IN-PARAM OBJECT REFERENCE JSTRING.
 PROCEDURE DIVISION USING IN-PARAM RETURNING RET-VAL.
 START-METHOD.
 SET TEMP-ITEM-1 TO IN-PARAM.
 CALL "C$TOUPPER" USING TEMP-ITEM-1.
 SET RET-VAL TO TEMP-ITEM-1.
 END METHOD.
 END FACTORY.

The Java class produced by the isCOBOL Compiler for this program has the following

definition:

JConvertCase.java:

package com.mycompany;

Cross-language Software Development with isCOBOL Evolve

 Page 16 of 42

public class JConvertCase
implements com.iscobol.rts.IscobolClass {
 // ...

 public static java.lang.String

toUpper(java.lang.String IN_PARAM) {
 // ...
 }
}

The JConvertCase COBOL class could be used from Java as follows:

import com.mycompany.JConvertCase;

public class main {
 public static void main(String args[])
 {
 System.out.println(JConvertCase.toUpper("abcdefghij"));
 }
}

Cross-language Software Development with isCOBOL Evolve

 Page 17 of 42

Calling COBOL from Java

As mentioned above, with isCOBOL each procedural COBOL program (those with

PROGRAM-ID) compiles to a Java class that has a call() method so it can be called as a

subprogram.

isCOBOL generates a main() method in the Java class

After compile with isCOBOL initial programs also have a main() method so that they can

be run with:

java PROGNAME cmd-line-arg1 cmd-line-arg2

Calling Existing Programs with com.iscobol.java.IsCobol

Existing programs can be invoked from Java using the isCOBOL framework class

com.iscobol.java.IsCobol which is available in iscobol.jar (or isrun.jar for strictly runtime

deployment). No COBOL code changes are required. For example,

import com.iscobol.java.IsCobol;

 int rc;
 rc = IsCobol.call("PROGNAME",

new String[] { "cmd-line-arg1", "cmd-line-arg2"});
 IsCobol.cancel("PROGNAME");

com.iscobol.types.* classes

To invoke a COBOL subprogram with linkage items from Java you can use the

com.iscobol.types.* classes to create the linkage items in Java and then pass them to the

program in an Object[]. For example,

If your program has:

 LINKAGE SECTION.
 01 arg1.
 05 arg1-x pic x(5).
 05 arg1-n pic 9(5).
 01 arg2.
 05 arg2-x pic x(5).
 05 arg2-n pic 9(5).

Cross-language Software Development with isCOBOL Evolve

 Page 18 of 42

Then you can call it from Java using something similar to:

import com.iscobol.types.PicX;
import com.iscobol.types.NumericVar;

 PicX ARG1;
 PicX ARG1_X;
 NumericVar ARG1_N;
 PicX ARG2;
 PicX ARG2_X;
 NumericVar ARG2_N;

 ARG1_X.set ("abcde");
 ARG1_N.set (12345);
 ARG2_X.set ("vwxyz");
 ARG2_N.set (56789);
 rc = IsCobol.call("SUBPROGNAME", new Object[] { ARG1, ARG2 });

Samples Included with isCOBOL

Java Code Calling an Existing COBOL Program

After installing isCOBOL you will find a working sample showing Java code calling an

existing COBOL program in the following folder:

C:\Program Files\Veryant\isCOBOL2010\sample\is-java\java-call-iscobol

Java Code Using a COBOL Object

It is often cleaner to define your own class and methods using OOCOBOL that calls your

legacy COBOL subprograms. This approach is highly recommended because it will give

you precise control over the interface that your Java programmers will use. For an example,

see Example of Java Calling a COBOL Class below. This example is included in the

following folder:

isCOBOL2010\sample\is-java\java-uses-cobol-object

From a program such as this, you could call any other COBOL subprogram you have. The

Java code that invokes this program does not need to reference isCOBOL framework

classes.

Cross-language Software Development with isCOBOL Evolve

 Page 19 of 42

Access COBOL Files Natively From Java Code with COBFILEIO

Another Veryant tool to consider is the COBFILEIO utility. The COBFILEIO utility works

together with the isCOBOL Compiler to read COBOL source code and generate Java

classes that can be used to access COBOL files and records. The Java programmer does not

need any knowledge of COBOL data types or their underlying storage format, and

COBFILEIO automatically generates Javadocs for the file and record classes. A data record

is managed as an object with set and get accessor methods for each elementary field. The

individual record fields are accessed using Java data types. The set methods automatically

perform data validation and throw customizable exceptions.

COBFILEIO generates Object-Oriented COBOL source code for the classes. This source

code can be customized and maintained in either COBOL or Java language. For more

information, see the COBFILEIO section later in this document.

Cross-language Software Development with isCOBOL Evolve

 Page 20 of 42

Developing and Debugging COBOL and Java Code Together

Using an Eclipse-based IDE it is possible to develop and debug COBOL and Java code

together. It is possible to install the isCOBOL IDE plug-ins into an existing Eclipse-based

IDE and to install the Java Development Toolkit into the isCOBOL IDE.

Example Steps for Setting Up Eclipse for Cross-language Development

Here are example steps for setting up an Eclipse-based IDE for Java Developers to enable

COBOL development and cross-language debugging:

1. Use Eclipse for Java Developers or other IDE based on Eclipse 3.5 or later. You can

download "Eclipse IDE for Java Developers (92 MB)" from

http://www.eclipse.org/downloads/

2. To add the isCOBOL IDE Plugins, select "Install New Software" from the Help menu

and click on "Add…". Enter "isCOBOL IDE" in the Name field and

http://support.veryant.it/eclipse in the Location field, and press OK. Click the

checkbox next to the isCOBOL release and all of the checkboxes in the items that

begin with "isCOBOL". Click on "Next >" and follow the prompts

3. Once you have created or imported your COBOL project, create a new Debug

Launch Configuration for your COBOL program

4. Allow the Java debugger to attach to the COBOL program by adding remote

debug options to the System Properties. For example, copy/paste the following

(all on one line):

-Xdebug

-Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=n

5. Create a new Debug Configuration for a Remote Java Application setting

Connection Type to Standard (Socket Attach), and the Connection Properties to

Host: localhost and Port: 8000

6. Start the COBOL program using the Debug Launch Configuration from steps 3 and

4

7. Start the Java Debugger using the Debug Configuration from step 5

Cross-language Software Development with isCOBOL Evolve

 Page 21 of 42

8. To "step into" or "return from" Java code called from COBOL or COBOL code called

from Java, first set breakpoints in the Java debugger or COBOL debugger at the

appropriate entry or exit points.

Using Other Java Debuggers Such as JSwat and jdb

Java debuggers such as JSwat and jdb can be used for cross-language debugging with

COBOL. Start debugging in the isCOBOL Debugger, and then use the remote debug

feature in the Java debugger attach to the running Java process (i.e. COBOL program).

Cross-language Software Development with isCOBOL Evolve

 Page 22 of 42

Veryant JISAM

Veryant JISAM is a Java-based ISAM file system for INDEXED files. Written completely in

Java, Veryant JISAM works on a range of Java-compatible platforms from mainframes to

handheld devices and includes a JUTIL utility for basic file management.

JISAM Limits

Maximum file size 9+ exabytes (over 9M terabytes)

Minimum record size 1 byte

Maximum record length 2 GB

Maximum number of keys No limit

Maximum key length 256 bytes

Max number of segments per key 16

Maximum number of records No limit

JUTIL Options

java JUTIL -info <filename>
 -load <filename> <binary sequential file>
 -unload <filename> <binary sequential file>
 -loadtext <filename> <line sequential file>
 -unloadtext <filename> <line sequential file>
 -loadr2 <filename> <binary sequential file>
 -shrink <filename>
 -check <filename>
 -rebuild <filename>

Cross-language Software Development with isCOBOL Evolve

 Page 23 of 42

COBFILEIO

The COBFILEIO utility works together with the isCOBOL Compiler to read COBOL source

code and generate Java classes that can be used to access COBOL files and records.

COBFILEIO reads External File Description (EFD) XML files that are produced by the

isCOBOL Compiler when it has been executed with the -efd compiler option. An EFD is a

data dictionary that contains the mapping to use when COBOL files and records are

accessed externally. COBFILEIO reads two files, an EFD file and an FD file containing the

standard COBOL file descriptor, and generates a Java class for the COBOL file and a Java

class for the COBOL record.

The Java programmer does not need any knowledge of COBOL data types or their

underlying storage format, and COBFILEIO automatically generates Javadocs for the file

and record classes.

The resulting classes can be brought into any Java development environment and Java

developers can take advantage of rapid development features such as Eclipse's "code

assist" to pop-up documentation and provide single key or click code completion.

A data record is managed as an object with set and get accessor methods for each

elementary field. The individual record fields are accessed using Java data types. The set

methods automatically perform data validation and throw customizable exceptions.

COBFILEIO generates Object-Oriented COBOL source code for the classes. This source

code can be customized and maintained in either COBOL or Java language.

Usage:

cobfileio fileName [-e]

Where:

fileName is the external file name in all lowercase letters. For example, if in the file's SELECT

statement there is ASSIGN TO DISK "/mydir/MYFILE", then the COBFILEIO command line

would be "java COBFILEIO myfile".

The –e option causes COBFILEIO to generate the exception classes. This needs to be done

only for the first file because the same exception classes are reused for every file.

Cross-language Software Development with isCOBOL Evolve

 Page 24 of 42

java COBFILEIO with no additional arguments reports a usage message.

Example Steps

1. Create the EFD file by compiling the COBOL program with the -efd compile option.

If desired, add the -efo=DirName compiler option to specify the directory where

the EFD file will be output.

2. Execute the COBFILEIO utility with java COBFILEIO fileName -e. Include the -e

option only the first time you run COBFILEIO.

3. Compile the exceptions classes. For example, javac *.java.

4. Compile the generated COBOL object classes. First compile the record class,

FileNameRec.cbl. Then compile the file class, FileNameFile.cbl. If desired, add the -

jj and -jc compiler options to generate Java source code.

5. If desired, use the javadoc utility that comes with the JDK to create Javadocs.

 NOTE - By default, COBFILEIO attempts to read an EFD named fileName.xml from the current

working directory. If your EFD file is in another directory then specify this directory as the value

of the cobfileio.efd_path property. For example,

java COBFILEIO -J-Discobol.cobfileio.efd_path=../efd fileName

COBFILEIO Sample

CorpFile.cbl and CorpRec.cbl are OO COBOL programs generated by COBFILEIO. The first one

implement a class to allow Java programs perform File operations on the Corp COBOL data file,

like Open, Close, Read, Write, etc. The second one implements a class to allow Java programs

perform sets and gets from record data items.

DataTesterCorp.java represents a native Java program that uses CorpFile and CorpRec classes in

order to access the Corp COBOL data file. In this sample it opens the Corp file for Input, reads the

record with main Key = “01”, closes the file and then retrieves a few data items from the read

record.

A few representative methods have been shown on the CorpFile and CorpRec classes instead of

the full program.

CorpFile.cbl

Cross-language Software Development with isCOBOL Evolve

 Page 25 of 42

 >> SOURCE FORMAT FREE
 IDENTIFICATION DIVISION.
 CLASS-ID. CorpFile as "com.sample.cobfileio.CorpFile".

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 REPOSITORY.
 CLASS JString as "java.lang.String"
 CLASS JShort as "short"
 CLASS CorpRec as "com.sample.cobfileio.CorpRec"
 CLASS FileException as "com.sample.cobfileio.FileException"
 .

 IDENTIFICATION DIVISION.
 OBJECT.

 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT CORP-FILE ASSIGN TO "CORP"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS CORP_NO
 FILE STATUS IS FILE-STATUS.

 FILE SECTION.
 >> SOURCE FORMAT FIXED
 COPY "corp.fd".
 >> SOURCE FORMAT PREVIOUS

 WORKING-STORAGE SECTION.
 PRIVATE.
 77 FILE-STATUS PIC X(2).
 01 ERROR-STATUS.
 05 PRIMARY-ERROR PIC X(2).
 05 SECONDARY-ERROR PIC X(10).
 77 STATUS-MESSAGE PIC X ANY LENGTH.
 77 J-FILE-STATUS object reference JShort.
 77 J-EXTENDED-STATUS object reference JShort.
 77 J-STATUS-MESSAGE object reference JString.
 77 FILE-EXC object reference FileException.
 77 TRACE-ON PIC 9(1).

 PUBLIC.
 77 KEY_CORP_NO object reference JString.

 PROCEDURE DIVISION.

Cross-language Software Development with isCOBOL Evolve

 Page 26 of 42

*>*********
 IDENTIFICATION DIVISION.
 METHOD-ID. RaiseException as "raiseException".
 PROCEDURE DIVISION raising FileException.
 MAIN.
 call "C$RERR" using error-status status-message.
 string "FS [" delimited by size
 file-status delimited by size
 "], EXFS [" delimited by size
 secondary-error delimited by space
 "], MSG [" delimited by size
 status-message delimited by size
 "]" delimited by size
 into status-message.

 set j-file-status to file-status.
 set j-extended-status to error-status.
 set j-status-message to status-message.
 set file-exc to FileException:>new(j-status-message,
 j-file-status, j-extended-status).
 raise file-exc.
 END METHOD.
*>*********
.
.
.
*>*********
 IDENTIFICATION DIVISION.
 METHOD-ID. FileNew as "new".
 PROCEDURE DIVISION.
 MAIN.
 self:>traceOff().
 set KEY_CORP_NO to JString:>new("CORP_NO").
 goback.
 END METHOD.

*>*********
 IDENTIFICATION DIVISION.
 METHOD-ID. DoOpen as "open".
 WORKING-STORAGE SECTION.
 77 open-type pic xx.
 LINKAGE SECTION.
 77 par-type object reference JString.
 PROCEDURE DIVISION using par-type raising FileException.
 DECLARATIVES.
 RAISE-EXCEPTION SECTION.
 use after standard error procedure on CORP-FILE.

Cross-language Software Development with isCOBOL Evolve

 Page 27 of 42

 self:>raiseException.
 goback.
 END DECLARATIVES.
 MAIN.
 set open-type to par-type.
 evaluate open-type
 when "O" open output CORP-FILE
 when "I" open input CORP-FILE
 when "IO" open i-o CORP-FILE
 when "E" open extend CORP-FILE
 end-evaluate.
 goback.
 END METHOD.
*>*********
 IDENTIFICATION DIVISION.
 METHOD-ID. DoClose as "close".
 WORKING-STORAGE SECTION.
 LINKAGE SECTION.
 PROCEDURE DIVISION raising FileException.
 DECLARATIVES.
 RAISE-EXCEPTION SECTION.
 use after standard error procedure on CORP-FILE.
 self:>raiseException.
 goback.
 END DECLARATIVES.
 MAIN.
 close CORP-FILE
 goback.
 END METHOD.
*>*********
.
.
.
*>*********
 IDENTIFICATION DIVISION.
 METHOD-ID. DoRead as "read".
 WORKING-STORAGE SECTION.
 77 key-name PIC X(32).
 LINKAGE SECTION.
 77 par-rec object reference CorpRec.
 77 par-key object reference JString.
 PROCEDURE DIVISION using par-rec, par-key raising FileException.
 DECLARATIVES.
 RAISE-EXCEPTION SECTION.
 use after standard error procedure on CORP-FILE.
 self:>raiseException.
 goback.

Cross-language Software Development with isCOBOL Evolve

 Page 28 of 42

 END DECLARATIVES.
 MAIN.
 invoke par-rec "getCorpRec" using CORP_REC
 set key-name to par-key
 evaluate key-name
 when "CORP_NO"
 read CORP-FILE key is CORP_NO
 when other
 read CORP-FILE key is CORP_NO
 end-evaluate
 invoke par-rec "setCorpRec" using CORP_REC
 if TRACE_ON = 1
 display "FS=[" FILE-STATUS "] RV=[" CORP_REC "]"
 display "CORP NO = " corp-no " Corp Top Price Xlg = " Corp-
Top-Price-Xlg
 end-if
 goback.
 END METHOD.
*>*********

 END OBJECT.

CorpRec.cbl

 >>SOURCE FORMAT FREE
 IDENTIFICATION DIVISION.
 CLASS-ID. CorpRec as "com.sample.cobfileio.CorpRec".

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 REPOSITORY.
 CLASS JString as "java.lang.String"
 CLASS JBigDecimal as "java.math.BigDecimal"
 CLASS JLong as "long"
 CLASS JBigInt as "java.math.BigInteger"
 CLASS JStringTooLongException as
"com.sample.cobfileio.StringTooLongException"
 CLASS JWrongScaleException as
"com.sample.cobfileio.WrongScaleException"
 CLASS JNumberTooLongException as
"com.sample.cobfileio.NumberTooLongException"
 .

 IDENTIFICATION DIVISION.

Cross-language Software Development with isCOBOL Evolve

 Page 29 of 42

 OBJECT.

 WORKING-STORAGE SECTION.
 PRIVATE.
 >> SOURCE FORMAT FIXED
 COPY "corp.rec".
 >> SOURCE FORMAT PREVIOUS
 77 StrExc object reference JStringTooLongException.
 77 ScaleExc object reference JWrongScaleException.
 77 NumberExc object reference JNumberTooLongException.
 77 exception-message PIC X ANY LENGTH.
 77 j-exc-message object reference JString.
 77 TRACE_ON PIC 9(1).

 PROCEDURE DIVISION.
.
.
.
*>*********
 IDENTIFICATION DIVISION.
 METHOD-ID. setCorpNo as "setCorpNo".
 WORKING-STORAGE SECTION.
 77 par-len pic 9(5).
 LINKAGE SECTION.
 77 par-val object reference JString.
 PROCEDURE DIVISION using par-val
 raising JStringTooLongException.
 MAIN.
 set par-len to par-val::"length"().
 if par-len > 2
 string "String Too Long. Field " delimited by size
 "[CORP_NO] " delimited by size
 "Max Length [2] " delimited by size
 "Current Length [" delimited by size
 par-len delimited by size
 "]" delimited by size
 into exception-message
 end-string
 self:>raiseStrException
 goback
 end-if.
 set CORP_NO to par-val.
 if TRACE_ON = 1
 DISPLAY "setCorpNo: VALUE=[" CORP_NO "]"
 end-if
 goback.
 END METHOD.

Cross-language Software Development with isCOBOL Evolve

 Page 30 of 42

*>*********
 IDENTIFICATION DIVISION.
 METHOD-ID. getCorpNo as "getCorpNo".
 WORKING-STORAGE SECTION.
 LINKAGE SECTION.
 77 ret-val object reference JString.
 PROCEDURE DIVISION returning ret-val.
 MAIN.
 set ret-val to CORP_NO.
 if TRACE_ON = 1
 DISPLAY "getCorpNo: VALUE=[" CORP_NO "]"
 end-if
 goback.
 END METHOD.
*>*********
 IDENTIFICATION DIVISION.
 METHOD-ID. setCorpCentury as "setCorpCentury".
 WORKING-STORAGE SECTION.
 77 par-len pic 9(5).
 77 big-number pic 9(30).
 LINKAGE SECTION.
 77 par-val object reference JLong.
 PROCEDURE DIVISION using par-val
 raising JNumberTooLongException.
 MAIN.
 set big-number to par-val.
 if big-number > 99
 string "Number Too Large. Field " delimited by size
 "[CORP_CENTURY] " delimited by size
 "Max Number [99] " delimited by size
 "Current Number [" delimited by size
 big-number delimited by size
 "]" delimited by size
 into exception-message
 end-string
 self:>raiseNumberException
 goback
 end-if.
 set CORP_CENTURY to par-val.
 if TRACE_ON = 1
 DISPLAY "setCorpCentury: VALUE=[" CORP_CENTURY "]"
 end-if
 goback.
 END METHOD.
*>*********
 IDENTIFICATION DIVISION.
 METHOD-ID. getCorpCentury as "getCorpCentury".

Cross-language Software Development with isCOBOL Evolve

 Page 31 of 42

 WORKING-STORAGE SECTION.
 LINKAGE SECTION.
 77 ret-val object reference JLong.
 PROCEDURE DIVISION returning ret-val.
 MAIN.
 set ret-val to CORP_CENTURY.
 if TRACE_ON = 1
 DISPLAY "getCorpCentury: VALUE=[" CORP_CENTURY "]"
 end-if
 goback.
 END METHOD.
*>*********
.
.
.
 END OBJECT.

DataTesterCorp.java

import java.math.BigDecimal;
import com.sample.cobfileio.*;

public class DataTesterCorp {

 private static String CORP_KEY_NAME = "CORP_NO";

 public static void main(String[] args) throws Exception {
 Boolean errorFound;

 CorpFile corpFile = new CorpFile();
 CorpRec corpRec = new CorpRec();
 corpFile.traceOn();
 errorFound=false;
 try {
 corpFile.open("I");
 corpRec.setCorpNo("01");
 corpFile.read(corpRec,CORP_KEY_NAME);
 corpFile.close();
 } catch (com.sample.cobfileio.FileException e) {
 errorFound = true;
 e.printStackTrace();
 } catch (com.sample.cobfileio.StringTooLongException e) {
 errorFound = true;
 e.printStackTrace();
 }

Cross-language Software Development with isCOBOL Evolve

 Page 32 of 42

 corpRec.traceOn();
 System.out.println(corpRec.getCorpCentury());
 System.out.println(corpRec.getCorpCookMin());

System.out.println(corpRec.getCorpTopPriceXlg().doubleValue());

System.out.println(corpRec.getCorpDelvyChg().doubleValue());
 System.out.println(corpRec.getCorpDineinMinAlpha().trim());
 System.out.println(corpRec.getCorpCity().trim());
 }
}

Cross-language Software Development with isCOBOL Evolve

 Page 33 of 42

How do you take your Java? - An Article

A little dash or a splash of COBOL can make for the perfect mix

isCOBOL allows programmers to take advantage of the best of both COBOL and Java by

providing common ground between the two technologies. With isCOBOL, organizations can

add the power and flexibility of the Java platform to existing COBOL programs and also make

COBOL investments easily accessible to the Java world. This article briefly examines some of

the synergies that exist between COBOL and Java technology and includes a few examples to

illustrate how COBOL and Java programmers can incorporate each other’s technologies with

isCOBOL Evolve.

Common Business Oriented Language – 50 Years Young

One of the original design goals for COBOL was to offer a programming language that

would be easy to read and understand by managers with no programming training.

Although managers rarely took advantage of that -- either fifty years ago or today -- a

direct outcome of this goal is that the COBOL language is comprised of familiar English

building block structures such as verbs, clauses, sentences, sections, and divisions. The

Environment Division, for instance, is a set area found in all COBOL programs that

describes the particular environment for which the program is written and all external

references, such as to devices, files, currency symbols, and object classes that a COBOL

application requires. A COBOL developer looking to move a program to a new platform or

region knows that this centralized area of code will have to be reviewed and potentially

altered to accommodate the new target platform’s requirements.

COBOL’s straightforward programming approach, clear organizational structure, ability to

deal with business logic, adoption of latest technological paradigms, and portability are

some of the primary factors that contributed to its widespread adoption and persistence

in the industry.

Originally called Green, then changed to Oak, finally known as Java – 15 years mature

The Java programming language leverages small, modular building blocks (known as

object classes) that are tied together to form a complete application. Two important

concepts in object-oriented programming are encapsulation and inheritance:

Cross-language Software Development with isCOBOL Evolve

 Page 34 of 42

• Encapsulation means that a Java class can be viewed as a "black box" whose

internal workings are hidden. To use a class it is only necessary to know what the

class does, not the details of how the class does it. As long as the public interface

stays the same, the internal mechanisms of a class can be improved or the class

can be replaced with a different one without impact on other components.

• Inheritance means that new classes can be formed using classes that have already

been defined, leveraging and extending their functionality.

Object classes can be easily assembled, disassembled, and reused in new applications as

business requirements change. Since Java programs run in any environment that supports

the proper Java Runtime Environment (JRE) they are extremely portable and can be

moved between platforms without any program code changes.

It is this modularity, portability, and reusability that contribute to the growing adoption of

Java programming in the industry today.

COBOL with A Dash of Java

With isCOBOL, developers can quickly add a wealth of new functionality to COBOL

applications by integrating free, reusable, modular solutions found in the Java SE and Java

EE Development Kits as well as in various open source communities such as The Apache

Software Foundation and SourceForge. Solutions available to Java developers are now

equally available to COBOL developers -- the challenge is only to identify the existing Java

solution needed for a particular programming task and to write the COBOL code to

interface with it.

It is important to emphasize that to integrate these Java solutions, a COBOL programmer

does not need to be trained and experienced in the Java language. The programmer’s

only requirements are to be able to understand basic object-oriented concepts such as

classes and methods, to know how to create an object and invoke a method in COBOL,

and to understand how to read and use the Javadocs for the particular Java class to be

used. These topics are covered in the isCOBOL Language Reference Manual and any

beginner's book or online resource on Java programming.

As an example of the new functionality isCOBOL makes available to the COBOL developer,

consider the full array of XML APIs and tools available to a Java programmer. To parse local

XML files or XML from a URL, a COBOL developer could use the JDOM Java package. Here

Cross-language Software Development with isCOBOL Evolve

 Page 35 of 42

is a simple program that retrieves an XML document from a URL and parses the XML using

JDOM.

Example of COBOL Using Java Packages

program-id. XMLfromURL.

 configuration section.
 repository.
 class J_Iterator as "java.util.Iterator"
 class J_Element as "org.jdom.Element"
 class J_SAXBuilder as "org.jdom.input.SAXBuilder"
 class J_Document as "org.jdom.Document"
 class J_URL as "java.net.URL"
 .

 working-storage section.
 77 W_SAXBuilder object reference J_SAXBuilder.
 77 W_Document object reference J_Document.
 77 W_Element object reference J_Element.
 77 W_Iterator object reference J_Iterator.
 77 xml pic x any length.

 procedure division.
 main.
 try
 move "file:///C:/Program%20Files/Veryant/isCOBOL2008/sample
 - "/issamples/files/Members.xml" to xml
 set W_SAXBuilder to J_SAXBuilder:: "new"
 set W_Document to W_SAXBuilder:: "build"(J_URL:: "new"(xml))
 set W_Element to W_Document:: "getRootElement"
 set W_Iterator to W_Element:: "getChildren":: "iterator"
 perform until not W_Iterator:: "hasNext"
 set W_Element to W_Iterator:: "next" as J_Element
 display W_Element:: "getChildText"("first_name")
 " " W_Element:: "getChildText"("name")
 " = " W_Element:: "getChildText"("age")

 end-perform
 catch exception
 display exception-object
 end-try.

 stop run.

Cross-language Software Development with isCOBOL Evolve

 Page 36 of 42

Developers can also take advantage of Java interfaces offered by third-party commercial

software providers. For example, to add an electronic payment processing feature, a

business could choose an electronic payment service provider and request the Java

interface. The COBOL developer could use that Java interface directly from COBOL.

Java with a Splash of COBOL

With isCOBOL, developers can now write programs in COBOL that can be called directly

from Java as if they were written in the Java language. Java developers do not need to

learn COBOL in order to make use of COBOL assets.

COBOL developers can present their subprograms as POJOs (Plain Old Java Objects). The

Java developer receiving the objects needs only to know the class and method names,

parameters, and return values to make use of them. The fact that the object class was

written in COBOL or that it calls other COBOL subprograms is inconsequential.

The isCOBOL Compiler automatically converts existing COBOL programs into POJOs. No

COBOL code changes are required. The COBOL program name becomes the Java class

name. The resulting Java class has a "call" method which Java code can invoke to call the

COBOL program. If required, the COBOL developer can precisely define the program's

object interface using object-oriented COBOL syntax. This COBOL object can accept and

return Java data types to make the Java developer's task even easier. For instance, if an

organization is looking to integrate with a JEE server and needs to deploy a Servlet, Web

Service, or Enterprise JavaBean (EJB), etc. those can all now be created natively in COBOL.

So what does this look like on the ground level to a developer? Let’s look at a few

examples.

Example of COBOL Calling Java Classes

Here is the source code for a COBOL program that uses object-oriented COBOL syntax to

access a Java class "java.lang.System" and use a Java data type "java.lang.String".

PROGRAM-ID. obj-system.
 CONFIGURATION SECTION.
 REPOSITORY.
 class Sys as "java.lang.System"
 class JString as "java.lang.String"
 .

Cross-language Software Development with isCOBOL Evolve

 Page 37 of 42

 WORKING-STORAGE SECTION.
 77 pic-x-item pic x(50).
 * There are two styles for specifying classes in object references

 77 jstring1 object reference "java.lang.String".
 77 jstring2 object reference JString.
 PROCEDURE DIVISION.
 main.
 * There are 3 styles of invoking an object method
 * Use the INVOKE statement

 invoke Sys "getProperty" using "os.name" giving pic-x-item.
 display "Operating System: " pic-x-item.
 * Use the SET statement with the double-colon operator

 set jstring1 to Sys::"getProperty" ("os.arch").
 display "OS Architecture: " jstring1.
 * Use the SET statement with the colon-greater-than operator

 set jstring2 to Sys:>getProperty ("java.version").
 display "Java Version: " jstring2.
 goback.

This example demonstrates the use of the repository paragraph to define COBOL user-

words that can be used to reference Java classes. It is also possible to specify the full Java

class name when declaring a variable as an object reference. This example shows 3 styles

of invoking methods. It shows the ability to use Java data types in COBOL statements

taking advantage of the isCOBOL Framework to automatically convert the Java data type

to the COBOL type that will work in that statement. This is just one example, any Java class

and any Java data type can be used.

Example of Java Calling a COBOL Class

COBOL developers can write programs in COBOL that can be called directly from Java as if

they were written in the Java language. Here is the source code for an object class

"isobject" written in COBOL.

 IDENTIFICATION DIVISION.
 CLASS-ID. isobj as "isobject".

 IDENTIFICATION DIVISION.
 FACTORY.

 CONFIGURATION SECTION.
 REPOSITORY.
 class jint as "int".

Cross-language Software Development with isCOBOL Evolve

 Page 38 of 42

 PROCEDURE DIVISION.

 IDENTIFICATION DIVISION.
 METHOD-ID. method1 as "add1".
 WORKING-STORAGE SECTION.
 77 var1 pic 9(9).
 77 var2 pic 9(9).
 77 result object reference jint.
 LINKAGE SECTION.
 77 buffer object reference "java.lang.String".
 77 num object reference jint.
 procedure division using buffer num returning result.
 MAIN.
 display "1st parameter: " buffer.
 display "2nd parameter: " num.
 display "> isobject.add1: result = num + 1".

 set var1 to num.
 compute var2 = 1 + var1.

 set result to var2 as int.
 goback.

 END METHOD.
 END FACTORY.

This class has one method "add1" which takes a Java string and a Java integer, displays

them to the standard output stream, adds 1 to the integer, and returns the result. The

isCOBOL Compiler will output a file named isobject.class which can be used by the Java

developer.

And here is the source code for a Java program which uses the COBOL object "isobject"

just as if it were written in Java language.

public class callCobolObject {
 public static void main(String args[]) {

 String PAR1 = "BUFFER";
 int PAR2 = 5;

 System.out.println ("I'm invoking isobject.add1 with"+PAR1+
", "+PAR2);

int RESULT = isobject.add1(PAR1, PAR2);

System.out.println ("I'm back with: "+RESULT);
System.exit(0);
 }
}

Cross-language Software Development with isCOBOL Evolve

 Page 39 of 42

Notice the call to isobject.add1(PAR1, PAR2) is simple Java code. The IDE used by the Java

developer will assist with code completion. Even the IDE doesn't know that isobject.class

was written in COBOL because behind-the-scenes the isCOBOL Compiler converted the

COBOL to Java source code.

Cross-language Software Development with isCOBOL Evolve

 Page 40 of 42

Conclusion

With isCOBOL, COBOL is your language, and Java is your platform. You get the benefits of

the Java platform automatically but you also retain all of your understanding of your

application and the ability to quickly fix bugs and enhance your application in COBOL,

while being able to switch to Java programming at any time if you wish to, or integrate

more and more Java programming at your own desired pace. The isCOBOL remote

debugging capability is useful for debugging Web Services and other programs that are

run by server software or that do not have a user interface.

To learn more about isCOBOL and related Veryant COBOL technologies, visit

www.veryant.com.

Cross-language Software Development with isCOBOL Evolve

 Page 41 of 42

Appendix A

Quick FAQ

What does the compilation create? What does the code run on?

The isCOBOL Compiler translates COBOL source code into Java classes that are then

executed with the Java Virtual Machine (JVM).

How is the integration with new Java code?

Since the isCOBOL Compiler generates pure Java output, once a desired third-party Java

solution has been identified, a developer need only write the COBOL code required to

interface with it. isCOBOL allows COBOL user-words to reference Java classes and

automatically converts Java data types to the COBOL type that will work in a particular

statement, simplifying the integration process.

The isCOBOL Compiler automatically converts existing COBOL programs into POJOs (Plain

Old Java Objects). No COBOL code changes required. The Java developer receiving the

objects needs only to know the class and method names, parameters, and return values to

make use of them. The fact that the object class was written in COBOL or that it calls other

COBOL subprograms is inconsequential.

How does it help companies to move to Java in the future?

With isCOBOL, it is up to the user as to whether or not the best route forward is to

continue programming and maintaining code in COBOL or the Java programming

language. isCOBOL enables programmers to choose between continuing to use proven

COBOL language code for as long as appropriate, or moving to Java technology when that

becomes a better fit for your business.

By default, the Java intermediate source code is created in memory and is not written to

disk by the isCOBOL Compiler. However, you can specify the “–jj” compiler option at any

time if you want to save this source code to disk in Java source files.

If desired to switch from COBOL programming to Java programming down the road, the

business would likely wrap its COBOL programs in objects using Object-Oriented COBOL

or Java for future use. In this case, the Java programmers would write new code in the Java

Cross-language Software Development with isCOBOL Evolve

 Page 42 of 42

programming language that would access the Java objects produced from the isCOBOL

code. After compilation with isCOBOL Compiler, the COBOL programs are Java classes

(i.e. .class files), and can be used by other Java classes without regard for the fact that they

were originally written in COBOL. This way a Java developer would never need to look at

the source because they would treat the COBOL at that point just like any other Java

object.

How do you work in parallel with both COBOL and Java?

Because Veryant has adapted the Eclipse platform to build the isCOBOL IDE, it is possible to

develop, maintain and debug COBOL and Java language programs together. Having a common

development environment for both COBOL and Java helps overcome the divide between

development teams, fosters cross training and facilitates the diffusion of valuable business and

institutional knowledge.

