veryant

iSCOBOL™ EIS
isCOBOL Enterprise Information System

© 2014 Veryant. All rights reserved.

isCOBOL Enterprise Information System 2014 R1

Copyright © 2014 Veryant LLC.

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying,
distribution and recompilation. No part of this product or document may be reproduced in any form by any

means without prior written authorization of Veryant and its licensors, if any.

Veryant and isCOBOL are trademarks or registered trademarks of Veryant LLC in the U.S. and other countries. All
other marks are property of their respective owners.

© Copyright 2014 Veryant. All rights reserved. Page 2 of 85

isCOBOL Enterprise Information System 2014 R1

isCOBOL Enterprise Information System 2014 Release 1

Introduction

isCOBOL Enterprise Information System (EIS) is an umbrella of tools and features available

in the isCOBOL Evolve Suite that allows development and execution of a web based

application in a J2EE container. There are several options to deploy a web application

based on EIS as shown in Figure 1, isCOBOL Enterprise Information System Architecture, in

order to provide the right option for every scenario.

Figure 1. isCOBOL Enterprise Information System Architecture

HTTP Browser

J2EE Servlet container

WebDirect 2

Ajax Comunication
Layer

WebDirect 15
Client

HTTP Browser

0OP COBOL
Serviet

HTTP
Request/Response

isCOBOL Enterprise Information System

HTTP Browser

COBOL REST WS

JSON/XML

HTML5/CS53

Application Agent

COBOL
NET
Java

PHP CURL

© Copyright 2014 Veryant. All rights reserved.

Page 3 of 85

isCOBOL Enterprise Information System 2014 R1

isCOBOL EIS (Enterprise Information System), Web Service option

A Web Service is a software system designed to support interoperable machine-to-
machine interaction over a network.

Many organizations use multiple software systems for management. Different software
systems often need to exchange data with each other, and a web service is a method of
communication that allows two software systems to exchange this data over the internet.
The software system that requests data is called a service requester or consumer, whereas
the software system that would process the request and provide the data is called a service
provider or producer.

Different software might be built using different programming languages, and hence
there is a need for a method of data exchange that doesn't depend upon a particular
programming language. Most types of software can, however, interpret XML or JSON

tags. Thus, web services can use XML or JSON files for data exchange.

Two predominant web services frameworks, REST and SOAP, are used in web site

development.

REST, Representational State Transfer and SOAP, Simple Object Access Protocol, provide
mechanisms for requesting information from resources, REST, or from endpoints, SOAP.
Perhaps the best way to think of these technologies is as a method of making a remote
procedure calls against a well-defined APl. SOAP has a more formal definition mechanism
called WSDL, Web Services Definition Language, and is more complex to implement. REST
uses the standard HTTP request and response mechanism, simplifying implementation
and providing for a more flexible, loose coupling of the client and server. Note that REST

also supports the transfer of non-XML messages such as JSON, JavaScript Object Notation.

© Copyright 2014 Veryant. All rights reserved. Page 4 of 85

isCOBOL Enterprise Information System 2014 R1

COBOL approach using REST

As explained above, there is software that is called a service requester or consumer, and

there is software that is called a service provider or producer.
COBOL REST producer

In order to develop a COBOL REST producer (server- side), to process requests and
provide data, the COBOL program has to be transformed to be executed like a Web
Service REST. This objective is achieved through the HTTPHandler class that allows
communication with HTML pages through AJAX retrieving data and printing results.

In the isCOBOL sample folder you will find the folder eis/webservices/rest that contains an

example of a COBOL REST producer (REST Web Service) and an example of a COBOL REST
consumer to be used to test the service.

In the server folder there is a COBOL source program called ISFUNCTIONS.chbl that

exposes two services: ISFUNCTION_GETZIP and ISFUNCTION_GETCITY that allow searching

a US city name by zip code or by name.

This program has three entries:

e MAIN, the default entry where the values to be used are loaded from the JSON stream:

move "94101" to a-zipcode(l).
move "San Francisco" to a-city(l).
move "San Francisco" to a-county(l).

move "California" to a-state(l).
move "92123" to a-zipcode(2).
move "San Diego" to a-city(2).
move "San Diego" to a-county(2).
move "California" to a-state(2).
move "10001" to a-zipcode(3).
move "New York" to a-city(3).
move "New York" to a-county(3).
move "New York" to a-state(3).
move "89044" to a-zipcode (4).
move "Las Vegas" to a-city(4).
move "Clark" to a-county(4).
move "Nevada York" to a-state(4).

move "Program Loaded" to ok-message;;
comm-area:>displayJSON (ok-page) .
goback.

© Copyright 2014 Veryant. All rights reserved.

Page 5 of 85

isCOBOL Enterprise Information System 2014 R1

e [SFUNCTION_GETZIP, a COBOL entry point that receives into isfunction-getZipCode

working storage structure, a name of a US city and returns the zip code into isfunction-

returnZipCode as JSON stream using displayJSON() method:

entry "ISFUNCTION GETZIP" using comm-area.
comm-area:>accept (isfunction-getZipCode).

move 1 to idx.
search array-data varying idx
at end
move "Zip code not Found" to retunrZipCode
when city-zipCode = a-city (idx)
move a-zipcode (idx) to retunrZipCode
end-search.

comm-area:>displayJSON (isfunction-returnZipCode) .

goback.

where jsfunction-getZipCode working storage structure is defined like:

01 isfunction-getZipCode identified by "".
03 identified by "get Zip Code".
05 city-zipCode pic x any length.

and isfunction-returnZipCode working storage structure is defined like:

01 isfunction-returnZipCode identified by "".
03 identified by "Zip Code".
05 retunrZipCode ©pic x any length.

e ISFUNCTION_GETCITY, a COBOL entry point that receives into isfunction-getCity
working storage structure, a zip code of a US city and return the city name into
isfunction-receivedCity variable as JSON stream using displayJSON() method:

entry "ISFUNCTION GETCITY" using comm-area.
comm-area:>accept (isfunction-getCity).

move 1 to idx.
search array-data varying idx

at end
move "City not Found" to returnCity
when zipCode-city(1l:5) = a-zipcode (idx)

move a-city(idx) to returnCity
end-search.

comm-area:>displayJSON (isfunction-recivedCity) .

goback.

© Copyright 2014 Veryant. All rights reserved.

Page 6 of 85

isCOBOL Enterprise Information System 2014 R1

where isfunction-getCity working storage structure is defined like:

01 isfunction-getcity identified by "".
03 identified by "get City".
05 zipCode-city pic x any length.

and isfunction-receivedCity working storage structure is defined like:

01 isfunction-recivedCity identified by "".
03 identified by "City".
05 returnCity pic x any length.

In order to have this ISFUNCTIONS.cbl working correctly, it should be compiled using
isCOBOL 2014R1 compiler and deployed inside a Java Servlet container like Tomcat, JBOSS
IBM WebSphere or BEA WebLogic.

© Copyright 2014 Veryant. All rights reserved. Page 7 of 85

isCOBOL Enterprise Information System 2014 R1

COBOL REST consumer

In order to develop a COBOL REST consumer (client-side), to invoke REST Web Service,
the COBOL program should take advantage of HTTPClient class that allows to
communicate with COBOL REST producer entry points through HTTP protocol. Also to

allow definition of HTTP parameters, an HTTPData.Params class is provided.

In the isCOBOL sample folder you find the folder eis/webservices/rest/client that contains
an example of COBOL client program called CLIENTH.cbl of previous ISFUNCTIONS.cbl

server service.

This program has the objective to invoke ISFUNCTION_GETZIP service and
ISFUNCTION_GETCITY to have the zip code of San Diego and to have the name of the city
whose zip code is 89044.

This program must take the following steps:

e Include HTTPClient and HTTPData.Params classes in COBOL repository:

configuration section.
repository.
class http-client as "com.iscobol.rts.HTTPClient"
class http-param as "com.iscobol.rts.HTTPData.Params".

e Establish the connection with REST Web Service using doGet() method and checking

the success of the operation using getResponseCode() method:
http:>doGet ("http://127.0.0.1:8080/isfunctions/servliet/isCobol (ISFUNCTIONS)")
http:>getResponseCode (response-code)
e Prepare the city name as parameter to be pass to the service
move "San Diego" to city-zipCode.

set params = http-param:>new():>add("get Zip Code", city-zipCode).

o Invoke the ISFUNCTION_GETZIP with prepared parameter and getting back the zip

code:

http:>doGet ("http://127.0.0.1:8080/isfunctions/"
"servlet/isCobol(ISFUNCTION_GETZIP)", params)

http:>getResponseCode (response-code)
if response-code = 200
http:>getResponseJSON (isfunction-recivedZipCode)

where isfunction-receivedZipCode working storage structure is defined like:

01 isfunction-recivedZipCode identified by "".
03 identified by "Zip Code".
05 zipCode pic x any length.

and 92123 is the zip code of San Diego saved into zipCode COBOL variable.

© Copyright 2014 Veryant. All rights reserved. Page 8 of 85

A similar approach should be the following, have the city name provide the zip code.

In order to have this CLIENTH.cbl working correctly, it should be compiled using isCOBOL
2014R1 compiler and run using isCOBOL EIS 2014R1:

Compile the program with the command:
iscc clienth.cbl

and run it with the command:

isrun CLIENTH

this is the result:

o isCOBOL Shell 2014R1 (64 bit)

C:\Program Files\Ueryant\isCOBOL2814R1\sample\eis\webservice\resticlient>iscrun
CLIENTH

Connection to the server 0Ok

Response code: 200

Response message: Program Loaded

Call the server to retrieve the zip code of 3San Diego
The zip code is 92123

Call the server to retrieve the name of the city of the zip code 89044
The city is Las Uegas

C:\Program Files\Ueryant\isCOBOL2814R1\sample\eis\webservice\resticlient>

isCOBOL Enterprise Information System 2014 R1

COBOL approach using SOAP

Starting with isCOBOL version 2014R1, EIS is provided as preliminary support to develop
COBOL programs capable to consume SOAP Web Services based on XML.

COBOL SOAP consumer

In order to develop a COBOL SOAP consumer (client-side), to invoke SOAP Web Service,
the COBOL program should take advantage of HTTPClient class. That class contains

several useful methods to work with SOAP Web Service.

In the isCOBOL sample folder you find the folder eis/webservices/soap/client that
contains an example of COBOL client program called IP2GEO.cbl that shows how to use a

SOAP Web Service available over internet at http://ws.cdyne.com/ip2geo/ip2geo.asmx .

This service “Resolves IP addresses to Organization, Country, City, and State/Province,
Latitude, Longitude. In most US cities it will also provide some extra information such as Area
Code, and more.”

A SOAP Web Service usually provides a way to inquire the functionality available and the
parameters that should be used. To simplify the working storage definition able to
manage the XML envelope, a new utility called WSDL2Wrk is provided.

That utility is able to read WSDL definition obtained adding ?WSDL to the Web Service URL
definition, something like: http.//ws.cdyne.com/ip2geo/ip2geo.asmx?WSDL generates the

following working storage :

*> binding name=IP2GeoSoap, style=
01 soap-ResolvelIP-input identified by 'Envelope'
namespace 'http://www.w3.0rg/2003/05/soap-envelope’.
03 identified by 'Body'.
06 identified by 'ResolveIP'
namespace 'http://ws.cdyne.com/"'.
07 identified by 'ipAddress'.
08 a-ipAddress pic x any length.
07 identified by 'licenseKey'.
08 a-licenseKey pic x any length.

© Copyright 2014 Veryant. All rights reserved. Page 10 of 85

http://ws.cdyne.com/ip2geo/ip2geo.asmx
http://ws.cdyne.com/ip2geo/ip2geo.asmx?WSDL

isCOBOL Enterprise Information System 2014 R1

01 soap-ResolvelIP-output identified by 'Envelope'
namespace 'http://www.w3.0rg/2003/05/soap-envelope’.
03 identified by 'Body'.
06 identified by 'ResolveIPResponse'
namespace 'http://ws.cdyne.com/"'.
07 identified by 'ResolveIPResult'.
08 identified by 'City'.
09 a-City pic x any length.
08 identified by 'StateProvince'.
09 a-StateProvince pic x any length.
08 identified by 'Country'.
09 a-Country pic x any length.
08 identified by 'Organization'.
09 a-Organization pic x any length.
08 identified by 'Latitude'.
09 a-Latitude pic x any length.
08 identified by 'Longitude'.
09 a-Longitude pic x any length.
08 identified by 'AreaCode'.
09 a-AreaCode pic x any length.
08 identified by 'TimeZone'.
09 a-TimeZone pic x any length.
08 identified by 'HasDaylightSavings'.
09 a-HasDaylightSavings pic x any length.
08 identified by 'Certainty'.
09 a-Certainty pic x any length.
08 identified by 'RegionName'.
09 a-RegionName pic x any length.
08 identified by 'CountryCode'.
09 a-CountryCode pic x any length.

This program has the objective to invoke the ResolvelP functionality providing the IP

address and receiving some geographic information like City, State, Country, etc.
This program must take the following steps:

e Include HTTPClient class in COBOL repository:

configuration section.
repository.
class http-client as "com.iscobol.rts.HTTPClient"

e Include the working storage definition to use XML envelope generated from WSDL by

WSDL2Wrk utility:

WORKING-STORAGE SECTION.
copy "ip2geo.cpy".

¢ Provide the IP address to obtain information and call the ResolvelP service using doPostEx()
method passing the URL of service, the SOAP media type and the input envelope generated
from WSDL2Wrk for ResolvelP service:

move "209.235.175.10" to a-ipAddress
http:>doPostEx (
"http://ws.cdyne.com/ip2geo/ip2geo.asmx"
"application/soap+xml; charset=utf-8"
soap-ResolveIP-input) .

© Copyright 2014 Veryant. All rights reserved. Page 11 of 85

e check the response if successful and show results:

http:>getResponseCode (response-code) .

display "Response code: " response-code.

if response-code = 200
http:>getResponseXML (soap-ResolveIP-output)
display "City=" a-city

display "StateProvince=" a-stateProvince
display "Country=" a-country
display "Organization=" a-Organization

display "Latitude=" a-latitude

display "Longitude=" a-longitude

display "AreaCode=" a-areaCode

display "TimeZone=" a-timeZone

display "Daylight savings=" a-HasDaylightSavings
display "Certainty=" a-certainty

display "RegionName=" a-regionName

display "CountryCode=" a-countryCode

In order to have this IP2GEO.cbl program working correctly, it should be compiled using
isCOBOL 2014R1 compiler and run using isCOBOL EIS 2014R1:

Compile the program with the command:
iscc IP2GEO.cbl

This is the result of execution of IP2GEO that consumes the ResolvelP SOAP Web Service:

= isSCOBOL Shell 2014R1 (64 bit) - o IEN
My

C:\Program Files\Ueryant\isCOBOL2014R1\sample\eis\webservice\soap\client>iscrun
IP2GEOD

Response code: 200

City=Nashville

StateProvince=TN

Country=United States

Organizations=

Latitude=36.16589

Longitude=-86. 7844

Daylight savings=false
Certainty=90
RegionName:
CountryCode=US

C:\Program Files\Ueryant\isCOBOL2814R1\sample\eisiwebserviceysoapiclient>

isCOBOL Enterprise Information System 2014 R1

Authentication and Authorization method

You can obtain limited access to an HTTP Service taking advantage of existing
Authentication and Authorizations providers like Google and Facebook based on OAuth
2.0 standard.

OAuth 2.0 is an open protocol to allow secure authorization in a simple and standard
method from web, mobile and desktop applications. The request is to make a COBOL
program accessible only by the logged users without checking for each single program.

Servlet Container Configuration

Servlet containers (e.g. Apache Tomcat) have fully configurable authentication systems,
however they usually don't fit well with the authentication from another server, thus they
are not used in this example.

You need to define a safe area where the isCOBOL application can be invoked only after a
successful authentication. Since the isCOBOL applications are executed in the same
context as if they were belonging to the same session, you can set an environment
property after the authentication process and then check for it each time an application
runs. However it is not handy nor safe to put a check in each program, thus you can define
a filter that does this job.

The configuration file web.xml will therefore contain the following entries:

<filter>
<filter-name>isCOBOL security</filter-name>
<filter-class>SecurityFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>1sCOBOL security</filter-name>
<url-pattern>/servlet/*</url-pattern>
</filter-mapping>

In this way you specify a program to run before running any program located under the
URL /servlet. This program could be the following isCOBOL class:

© Copyright 2014 Veryant. All rights reserved. Page 13 of 85

isCOBOL Enterprise Information System 2014 R1

class-id. SecurityFilter as "SecurityFilter"
implements c-filter.
configuration section.
repository.
class j-ioexception as "java.io.IOException"
class c-filter as "javax.servlet.Filter"
class c-filter-chain as "javax.servlet.FilterChain"
class c-filter-config as "Jjavax.servlet.FilterConfig"
class c-ServletException as "javax.servlet.ServletException"
class c-ServletRequest as "javax.servlet.ServletRequest"
class c-ServletResponse as "Jjavax.servlet.ServletResponse"
class c-HttpServletResponse as
"javax.servlet.http.HttpServletResponse"
class c-HttpServletRequest as
"javax.servlet.http.HttpServletRequest"

id division.

object.

data division.
working-storage section.

procedure division.

id division.

method-id. init as "init".

linkage section.

77 cfg object reference c-filter-config.

procedure division using cfg raising c-ServletException.
main.

end method.

id division.

method-id. c-destroy as "destroy".
procedure division.

main.

end method.

id division.
method-id. doFilter as "doFilter".
working-storage section.
77 email pic x any length.
77 uri pic x any length.
77 http-response object reference c-HttpServletResponse.
linkage section.
77 request object reference c-ServletRequest.
77 response object reference c-ServletResponse.
77 f-chain object reference c-filter-chain.
procedure division using request response f-chain
raising c-ServletException j-IOException.
main.
accept email from environment "openid.email".
if email = space
set http-response to response as c-HttpServletResponse
http-response:>sendError
(c-HttpServletResponse:>SC FORBIDDEN)
else
f-chain:>doFilter (request response)
end-if.
end method.
end object.

© Copyright 2014 Veryant. All rights reserved.

Page 14 of 85

isCOBOL Enterprise Information System 2014 R1

This program simply checks if the property "openid.email" has been set to a value different
from space and in that case it forwards the execution to the next filter in the chain,
otherwise it stops the execution with an error code.

This assures you that any program under the URL /servlet, the safe area, will be executed

only if previously in the same session, some program has set the property.

You now need to write that program and define it outside the safe area.

© Copyright 2014 Veryant. All rights reserved. Page 15 of 85

isCOBOL Enterprise Information System 2014 R1

Facebook Authentication

Here we show an example of how to implement a program in order to authenticate the
access using the Facebook authentication. You can find Facebook's documentation at the
address: https://developers.facebook.com/docs/facebook-login/manually-build-a-login-
flow/v2.0

This kind of authentication requires your program to redirect the login phase to the
Facebook site and then performs some HTTP requests to the Facebook APIs. Your program

will use the following classes:

configuration section.

repository.
class web-area as "com.iscobol.rts.HTTPHandler"
class http-client as "com.iscobol.rts.HTTPClient"
class http-params as "com.iscobol.rts.HTTPData.Params"
class j-bigint as "java.math.BigInteger"
class j-securernd as "java.security.SecureRandom"

working-storage section.
01 params object reference http-params.
01 http object reference http-client.

The classes j-bigint and j-securernd are used to create a secure random number whose

purpose will be explained later.

In order to use the Facebook authentication, you need a Facebook App ID that you can
create and retrieve on the App Dashboard (https://developers.facebook.com/apps/).

There you get a client ID and a client secret that are necessary in the authentication
process.

Let's say that the URL of our program is http://veryant.com/oauth/FBConnect, then the
WORKING-STORAGE SECTION will contain:

78 client-id value "<client-id-by-Facebook>".

78 clsc value "<client-secret-by-Facebook>".

78 redir value "http://veryant.com/oauth/FBConnect".
78 realm value "http://veryant.com/oauth".

01 state pic x any length.

© Copyright 2014 Veryant. All rights reserved. Page 16 of 85

https://developers.facebook.com/docs/facebook-login/manually-build-a-login-flow/v2.0
https://developers.facebook.com/docs/facebook-login/manually-build-a-login-flow/v2.0
https://developers.facebook.com/apps/

isCOBOL Enterprise Information System 2014 R1

The login process can be divided in three stages:

e Request the authentication from Facebook through a redirection;

e Get the authentication data in order to be able to query Facebook APIs;
e Get the logged user data.

The program is called two times: the first time by the user in order to start the
authentication process and the second time by a Facebook redirection.

The first phase is simply a redirection in where you specify what URL must be called back.

You must protect the security of your users by preventing request forgery attacks. In order
to be sure that this callback is performed by the URL you actually called, a random id (state
token) must be supplied. According to Google documentation

(https://developers.google.com/accounts/docs/OAuth2Login): "One good choice for a state

token is a string of 30 or so characters constructed using a high-quality random-number
generator”. These tokens are often referred to as cross-site request forgery (CSRF) tokens.

You can create this secure random id using the classes j-securernd and j-bigint as in
following code:

set state=j-bigint:>new (130 j-securernd:>new):>toString(32).

The code for redirection then will be:

phase-l-redirection.
set state=j-bigint:>new (130 j-securernd:>new) :>toString(32).
set params = http-params:>new
:>add ("client id" client-id)
:>add ("display" "popup")
:>add ("response type" "code")
:>add ("scope" "email")
:>add ("redirect uri" redir)
:>add ("state" state)

comm-area:>redirect (
"https://www.facebook.com/dialog/oauth" params) .

© Copyright 2014 Veryant. All rights reserved. Page 17 of 85

https://developers.google.com/accounts/docs/OAuth2Login
http://en.wikipedia.org/wiki/Cross-site_request_forgery

isCOBOL Enterprise Information System 2014 R1

The second phase begins when the same application is called back by Facebook, as
specified by the redir variable. The program can easily tell if it is the first run or the second
by the setting of the variables state and http-state: the former is set by phase 1 while the
latter will be passed by Facebook in the redirection of the login. So the initial part of the
program could be the following one:

linkage section.

01 comm-area object reference web-area.
procedure division using comm-area.
main.

accept client-id from environment "app id by fb"
accept clsc from environment "app secret by fb".

accept redir from environment "realdir fb".

if user-email = ""
perform do-auth
else
perform run-first-program
end-1if.
goback.

do-auth.
initialize http-response.
comm-area:>accept (http-response) .
if http-state = space
perform phase-l-redirection
else
if http-state = state
perform phase-2-get-auth-token
perform phase-3-get-info
perform set-first-program
perform run-first-program
else
string "Forged state! (" http-state ") (" state ")"
into err-msg
comm-area:>displayError (403 err-msg)
end-1if
end-if.

The parameters received by Facebook are described in the following variable:
01 http-response identified by " ".
03 identified by "state".
05 http-state pic x any length.
03 identified by "code".
05 http-code pic x any length.

© Copyright 2014 Veryant. All rights reserved. Page 18 of 85

isCOBOL Enterprise Information System 2014 R1

The parameter code (stored in http-code) is the one you need in order to get the

authorization to query the Facebook APIs, along with your client ID and client secret. The

source code of the second phase could be the following:

phase-2-get-auth-token.
set http = http-client:>new
set params = http-params:>new
:>add ("code" http-code)
:>add ("client id" client-id)
:>add ("client secret" clsc)
:>add ("redirect uri" redir)
:>add ("grant type" "authorization code")
try
http:>doPost (
"https://graph.facebook.com/ocauth/access token" params)
http:>getResponseCode (response-code)
if response-code = 200
http:>getResponsePlain (fb-token)
else
comm-area:>displayError (response-code "")
goback
end-1if
catch exception
comm-area:>displayError (500 exception-object:>toString)
goback
end-try.

If the request is successful, the program will receive a character string, called "access

token", that allows you to call anything among the Facebook APIs. You still don't have any

information about the person who is logged, so you need to get some basic information.

In the third phase you may choose to call the APl "me": this API returns a JSON payload

whose data is described in the following variable:

01 user-info identified by " ".
03 identified by "id".
05 user-id pic x any length.
03 identified by "email".
05 user-email pic x any length.
03 identified by "verified".
05 user-verified-email pic x any length.
03 identified by "name".
05 user-name pic x any length.
03 identified by "first name".
05 user-given-name pic x any length.
03 identified by "last name".
05 user-family-name pic x any length.
03 identified by "link".
05 user-link pic x any length.
03 identified by "picture".
05 user-picture pic x any length.
03 identified by "gender".
05 user-gender pic x any length.

© Copyright 2014 Veryant. All rights reserved.

Page 19 of 85

isCOBOL Enterprise Information System 2014 R1

The source code could be the following:

phase-3-get-info.
string "https://graph.facebook.com/me?" fb-token
into authorization
set http = http-client:>new
try
http:>doGet (authorization)
http:>getResponseCode (response-code)

if response-code = 200
http:>getResponseJSON (user-info)

else
comm-area:>displayError (response-code "")
goback

end-if

catch exception
comm-area:>displayError (500 exception-object:>toString)
goback

end-try.

Note that this time there is a STRING command instead of passing the parameters in the
usual way. This is because the access token must be passed as it is.

If the call is successful, then the only thing to do is start the next program, i.e. the first
program in the application, for example:
set-first-program.

set environment "openid.email" to user-email.

accept data-dir from environment "file.prefix"
string data-dir "/" user-email into data-dir

call "cSmakedir" using data-dir
set environment "file.prefix" to data-dir.

run-first-program.
comm-area:>redirect (" index.html").

© Copyright 2014 Veryant. All rights reserved.

Page 20 of 85

isCOBOL Enterprise Information System 2014 R1

Google Authentication

Here we show an example about how to implement a program in order to authenticate
the access using Google authentication. You can find Google's documentation at the
address: https://developers.google.com/accounts/docs/OAuth2Login.

This kind of authentication requires your program to redirect the login phase on the
Google site and then performs some HTTP requests to the Google APIs. Your program will
use the following classes:

configuration section.

repository.
class web-area as "com.iscobol.rts.HTTPHandler"
class http-client as "com.iscobol.rts.HTTPClient"
class http-params as "com.iscobol.rts.HTTPData.Params"
class j-bigint as "Java.math.BigInteger"
class j-securernd as "java.security.SecureRandom"

working-storage section.

01 params object reference http-params.
01 http object reference http-client

The classes j-bigint and j-securernd are used to create a secure random number whose
purpose will be explained later.

According to Google's documentation "Before your application can use Google's OAuth
2.0 authentication system for user login, you must set up a project in the Google
Developers Console (https://console.developers.google.com/) to obtain OAuth 2.0
credentials, set a redirect URI, and (optionally) customize the branding information that
your users see on the user-consent screen. You can also use the Developers Console to
create a service account, enable billing, set up filtering, and do other tasks. For more
details, see the Google Developers Console Help
(https.//developers.google.com/console/help/console)"

There you get a client ID and a client secret that will be necessary in the authentication
process.

Let's say that the URL of our program is http://picosoft.it/ismobile3/OpenIDConnect then
the WORKING-STORAGE SECTION will contain:

78 client-id value "<client-id-by-Google>".

78 clsc value "<client-secret-by-Google>".

78 redir value "http://veryant.com/oauth/GOOGLEConnect".
78 realm value "http://veryant.com/oauth".

01 state pic x any length.

© Copyright 2014 Veryant. All rights reserved. Page 21 of 85

https://developers.google.com/accounts/docs/OAuth2Login
https://console.developers.google.com/
https://console.developers.google.com/
https://developers.google.com/console/help/console
https://developers.google.com/console/help/console
https://developers.google.com/console/help/console

isCOBOL Enterprise Information System 2014 R1

The login process can be divided in three stages:

e Request the authentication from Google through a redirection;

e Get the authentication data in order to be able to query Google APIs;
o Get the data about the logged user.

The program will be called two times: the first time by the user in order to start the

authentication process, the second time by a Google redirection.

The first phase is simply a redirection in which you must specify what URL must be called
back.

You must protect the security of your users by preventing request forgery attacks. In order
to be sure that this callback is performed by the URL you actually called, a random id (state
token) must be supplied. According to Google documentation: "One good choice for a state
token is a string of 30 or so characters constructed using a high-quality random-number
generator”. These tokens are often referred to as cross-site request forgery (CSRF) tokens.

You can create this secure random id using the classes j-securernd and j-bigint as in
following code:

set state=j-bigint:>new (130 j-securernd:>new) :>toString(32).

The code for redirection then will be:

phase-1l-redirection.
set state to
j-bigint:>new (130 j-securernd:>new) :>toString(32).
set params = http-params:>new
:>add ("client id" client-id)
:>add ("response type" "code")
:>add ("scope" "openid email")
:>add ("redirect uri" redir)
:>add ("state" state)
:>add ("openid.realm" realm)
comm-area:>redirect ("https://accounts.google.com/o/oauth2/auth" params) .

Note that the SCOPE parameter has the value "openid email": if you do not include "email"
then the logger will not share his email address with your application.

© Copyright 2014 Veryant. All rights reserved. Page 22 of 85

http://en.wikipedia.org/wiki/Cross-site_request_forgery

isCOBOL Enterprise Information System 2014 R1

The second phase begins when the same application is called back by Google, as specified

by the redir variable. The program can easily tell if it is the first run or the second by the
setting of the variables state and http-state: the former is set by phase 1 while the latter

will be passed back by Google in the redirection of the login. So the initial part of the

program could be the following:

linkage section.

01 comm-area object reference web-area.
procedure division using comm-area.
main.

accept client-id from environment "client id by google"
accept clsc from environment "client secret by google".

accept redir from environment "realdir".
accept realm from environment "realm".

if user-email = space
perform do-auth
else
perform run-first-program
end-if.
goback.
do-auth.

initialize http-response.
comm-area:>accept (http-response) .
if http-state = space
perform phase-l-redirection
else
if http-state = state
perform phase-2-get-auth-token
perform phase-3-get-info
perform set-first-program
perform run-first-program
else

comm-area:>displayError (403 "Forged state!")

end-1f
end-if.

The parameters received back by Google are described in the following variable:

01 http-response identified by " ".
03 identified by "state".
05 http-state pic x any length.
03 identified by "code".
05 http-code pic x any length.

© Copyright 2014 Veryant. All rights reserved.

Page 23 of 85

isCOBOL Enterprise Information System 2014 R1

The parameter code (stored in http-code) is the one you need in order to get the
authorization to query the Google APIs, along with your client ID and client secret. The
source code of the second phase could be the following:

phase-2-get-auth-token.

set http = http-client:>new

set params = http-params:>new

:>add ("code" http-code)

:>add ("client id" client-id)
:>add ("client secret" clsc)
:>add ("redirect uri" redir)
:>add ("grant type" "authorization code")
try

http:>doPost (

"https://accounts.google.com/o/ocauth2/token"

params)

http:>getResponseCode (response-code)

if response-code = 200
http:>getResponseJSON (google-auth)

else
comm-area:>displayError (response-code "")
goback

end-if

catch exception
comm-area:>displayError (500 exception-object:>toString)
goback

end-try.

If the request is successful, the program will receive a JSON payload, containing two
strings of characters called "access_token" and "token_type" that allow you to call
anything among the Google APIs. This is the isCOBOL description of the JSON:

01 google-auth identified by " ".
03 identified by "access token".
05 access-token pic x any length.
03 identified by "token type".
05 token-type pic x any length.
03 identified by "expires in".
05 expires-in pic 9(9).
03 identified by "id token".
05 id-token pic x any length.

You still don't have any information about the person who logged in, so you need to get
some basic information.

© Copyright 2014 Veryant. All rights reserved. Page 24 of 85

isCOBOL Enterprise Information System 2014 R1

In the third phase you may choose to call the API "userinfo": this APl returns a JSON

payload whose data are described in the following variable:

01 user-info identified by " ".
03 identified by "id".
05 user-id pic x any length.
03 identified by "email".
05 user-email pic x any length.
03 identified by "verified email".
05 user-verified-email pic x any length.
03 identified by "name".
05 user-name pic x any length.
03 identified by "given name".
05 user-given-name pic x any length.
03 identified by "family name".
05 user-family-name pic x any length.
03 identified by "link".
05 user-link pic x any length.
03 identified by "picture".
05 user-picture pic x any length.
03 identified by "gender".
05 user-gender pic x any length.

In order to query the Google APIs you need to put an authorization property in the header
of each request: the property key will be "Authorization" while the property value will be
the concatenation of the "token_type" plus the "access_token" separated by a space
character. The source code could be the following:

phase-3-get-info.
string token-type " " access-token into authorization
try
http:>setHeaderProperty ("Authorization" authorization)
http:>doGet (
"https://www.googleapis.com/oauth2/v2/userinfo")
http:>getResponseCode (response-code)

if response-code = 200
http:>getResponseJSON (user-info)

else
comm-area:>displayError (response-code "")
goback

end-1if

catch exception
comm-area:>displayError (500 exception-object:>toString)
goback

end-try.

© Copyright 2014 Veryant. All rights reserved. Page 25 of 85

isCOBOL Enterprise Information System 2014 R1

If the call is successful, then the only thing to do is to start the next program, i.e. the first
program in the application, for example:
set-first-program.

set environment "openid.email" to user-email.

accept data-dir from environment "file.prefix"
string data-dir "/" user-email into data-dir

call "c$makedir" using data-dir
set environment "file.prefix" to data-dir.

run-first-program.
comm-area:>redirect (" index.html").

For Complete examples of Facebook and Google authentications see the installed samples

under sample\eis\other\oauth

© Copyright 2014 Veryant. All rights reserved. Page 26 of 85

isCOBOL Enterprise Information System 2014 R1

Twitter Authentication

If you need to implement a program in order to access some Twitter's APIs using the
application-only authentication, the following will explain how to do it. Also the example
shows how to read some Twitts once connected. You can find Twitter's documentation at
the address: https://dev.twitter.com/docs/auth/application-only-auth.

In order to use this kind of authentication you need to have a configured application on
Twitter to get a "Consumer Key" (or "API Key") and a "Consumer secret" (or "API Secret").

These two strings are basically equivalent to a login name and a password to be used in an
HTTP Basic Authentication.

Your COBOL program will define at least 2 classes: the class for doing an HTTP connection
and the class for passing parameters in the HTTP requests, e.g.:

CONFIGURATION SECTION.

REPOSITORY.
class http-client as "com.iscobol.rts.HTTPClient"
class http-params as "com.iscobol.rts.HTTPData.Params"

WORKING-STORAGE SECTION.
77 http object reference http-client.
77 parms object reference http-params.

So the first HTTP request will be a typical POST request using the Basic authentication and

supplying the parameter "grant_type" whose value will be "client_credentials".

set parms = http-params:>new
:>add ("grant type", "client credentials")

set http = http-client:>new.
http:>setAuth ("<Consumer-key-by-Twitter>"
"<Consumer-secret-by-Twitter>").
try
http:>doPost (
"https://api.twitter.com/ocauth2/token" parms)
http:>getResponseCode (response-code)

The response to this request will be a JSON-encoded payload: if the response code is
different from 200 (OK), the JSON payload will be something like the following:

{"errors": [
{"label":"authenticity token error","code":99, "message":
"Unable to verify your credentials"}]}

© Copyright 2014 Veryant. All rights reserved. Page 27 of 85

https://dev.twitter.com/docs/auth/application-only-auth

isCOBOL Enterprise Information System 2014 R1

while if the response will be 200 the JSON payload will be something like this:

{"token type":"bearer","access token":
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAAAAAAAAAAAAAAAAAAAASDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAA"}

In order to get the data from this payload you can define the following structure in
isCOBOL:
01 twitter-auth identified by "".
03 identified by "token type".
05 token-type pic x any length.

03 identified by "access token".
05 access-token pic x any length.

So you can get the two strings with something like:

if response-code = 200
http:>getResponseJSON (twitter-auth)

According to the official documentation, you must verify that the token type is "bearer"
and then you can use the access token to call the APIs you need, allowed by this
authentication method.

For example, you can implement the "user_timeline" API: in order to do this, we need to
use the access token as "bearer" instead of the login/password used previously. The new
method setAuth (ICobolVar a) of HTTPClient do exactly this. You can also pass all the
supported parameters. See
https://dev.twitter.com/docs/api/1.1/get/statuses/user_timeline for the full

documentation. E.g.:

if token-type = "bearer"
http:>setAuth (access-token)
set parms = http-params:>new
:>add ("count"™, "20")
:>add ("screen name", "VeryantCOBOL");;
http:>doGet ("https://api.twitter.com/1.1"-
"/statuses/user timeline.json" parms)

In this case you perform the GET request according to the official documentation. This
request will return two different JSON payloads depending on the success of the call, but,
differently from what happened in the previous API, it seems that the response code is 200
in any case. This means that you cannot know which isCOBOL structure you must use in
order to get the data from the payload. Fortunately the isCOBOL JSON parser doesn't need
a complete structure, it tries to fill the supplied structure with the JSON payload even if
some members are missing, as long as the payload fits the structure.

© Copyright 2014 Veryant. All rights reserved. Page 28 of 85

https://dev.twitter.com/docs/api/1.1/get/statuses/user_timeline

isCOBOL Enterprise Information System 2014 R1

The two formats returned by the above API are very different: when there is an error the
format is very similar to the one already seen above when the authorization fails. If the
operation return successfully, however, the payload will be an array of objects, whose
length depends on the "count" parameter, each one including about 100 fields (see

https://dev.twitter.com/docs/api/1.1/get/statuses/user timeline for a complete

description).

In our example we are interested only in few fields, so we have defined a structure like the
following:

01 twitter identified by "root".
03 identified by "errors" occurs dynamic capacity err-cnt.
05 identified by "message".
07 error-mesg pic x any length.
05 identified by "code™.
07 error-code pic x any length.
03 array identified by "element" occurs dynamic
capacity cnt.
05 identified by "text".
07 twittext pic x any length.
05 identified by "user".
07 identified by "screen name".
09 screen-name pic x any length.

The first 03 item (“errors”) is useful only when the API returns an error while the second 03
item (“element”) is the data we need for our application.

This is the full program:

PROGRAM-ID. tweet.

CONFIGURATION SECTION.

REPOSITORY.
class http-client as "com.iscobol.rts.HTTPClient"
class http-params as "com.iscobol.rts.HTTPData.Params"

WORKING-STORAGE SECTION.

77 http object reference http-client.
77 parms object reference http-params.
77 i int.

77 some-text pic x any length.

77 response-code pic 999.

77 api-key pic x any length.
77 api-secret pic x any length.

01 twitter-auth identified by "".
03 identified by "token type".
05 token-type pic x any length.
03 identified by "access token".

© Copyright 2014 Veryant. All rights reserved. Page 29 of 85

https://dev.twitter.com/docs/api/1.1/get/statuses/user_timeline

isCOBOL Enterprise Information System 2014 R1

05 access-token pic x any length.

01 twitter identified by "root".
03 identified by "errors" occurs dynamic capacity err-cnt.
05 identified by "message".
07 error-mesg pic x any length.
05 identified by "code".
07 error-code pic x any length.
03 array identified by "element" occurs dynamic capacity cnt.
05 identified by "text".
07 twittext pic x any length.
05 identified by "user".
07 identified by "screen name".
09 screen-name pic x any length.

PROCEDURE DIVISION.
MAIN.

accept api-key from environment "api key"
accept api-secret from environment "api secret"

set parms = http-params:>new
:>add ("grant type", "client credentials")

set http = http-client:>new.
http:>setAuth (api-key api-secret)
try
http:>doPost (
"https://api.twitter.com/oauth2/token" parms)
http:>getResponseCode (response-code)
if response-code = 200
http:>getResponseJSON (twitter-auth)
if token-type = "bearer"
http:>setAuth (access-token)
set parms = http-params:>new
:>add ("count", "20")
:>add ("screen name", "VeryantCOBOL");;
http:>doGet ("https://api.twitter.com/1.1"-
"/statuses/user timeline.json" parms)
if response-code = 200
display "Connection OK Response code="
response-code; ;
http:>getResponseJSON (twitter)
perform show-results
else
display "Response code=" response-code;;
http:>getResponsePlain (some-text)
display some-text
goback
end-if
else
display "wrong token-type=" token-type
end-if
else
display "Connection problem. Response code="
response-code; ;
http:>getResponsePlain (some-text)
display some-text
goback
end-1if
catch exception

© Copyright 2014 Veryant. All rights reserved.

Page 30 of 85

isCOBOL Enterprise Information System 2014 R1

display exception-object:>toString
goback

end-try.

goback.

show-results.
display "Total Number of errors [" err-cnt "]"
if err-cnt > 0
perform varying i from 1 by 1 until i > err-cnt

display "code=" error-code(i) ": " error-mesg (i)
end-perform
else
display "Total number of Tweets [" cnt "]"

perform varying i from 1 by 1 until i > cnt
display "Tweet " 1i
display "@" screen name (i) ": " twittext (i)
end-perform
end-if.

where “api_key” and “api_secret” are the "Consumer Key" (or "API Key") and a "Consumer
secret" (or "API Secret") are retrieved from the configuration file.

© Copyright 2014 Veryant. All rights reserved. Page 31 of 85

isCOBOL Enterprise Information System 2014 R1

HTML5/CSS3 JS and JSON

With isCOBOL EIS taking advantage of COBOL REST producer and JSON COBOL
integration, it is possible to write a Rich GUI Client Desktop application based on HTML5
and CSS3.

The client javascript library we recommend to work with is called AngularJS
(http://angularjs.org/), and is developed and supported by Google.

This library, among other things, makes it easy to bind the data model coming from
isCOBOL programs to the web page. An angular application is built on views and
controllers. Each view (a page or part of a page) is handled by a controller, which fetches
data from the isCOBOL servlet and binds it to the view's components.

The example page is described below and you find all sources on
sample/eis/other/angularjs.
a8 Customers tutorial - Internet Explorer - O

e)| piep//127.00.1:8060/2ngul. O ~ & || [Customers tutorel

Email address to search

First name

John

Surname

Doe

email

jhondoe@jhon.doe.com

Country

United States of America

First Next

Operation successiul

© Copyright 2014 Veryant. All rights reserved. Page 32 of 85

isCOBOL Enterprise Information System 2014 R1

First of all we need to include all relevant javascript and CSS files in the head of HTML
page:

<link href="css/bootstrap.min.css" rel="stylesheet" media="screen"/>

<link href="css/bootstrap-theme.min.css" rel="stylesheet" media="screen"/>
<link href="css/customers.css" rel="stylesheet" media="screen"/>

<script type="text/javascript" src="js/jquery.]js"></script>

<script type="text/javascript" src="js/angular.min.js"></script>

<script type="text/javascript" src="js/bootstrap.min.js"></script>

<script type="text/javascript" src="js/app.js"></script>

Then we should indicate the tag ng-app in the <html> declaration in order to load the

library and process all directives in the page:
<html ng-app="appTutorial">

All code to manage HTML application is contained in the file app.js.

Let's examine it:

e [t contains the application declaration (angular.module(‘appTutorial’, [1);)
o It defines a controller CustomersCtrl which will handle a customer page

The controller is injected with a Sscope variable, which represents the current instance of
the controller itself, and Shttp, which is an object provided by the AngularJS library that
supports http requests to servers.

We define our model using $scope.customer={}, which creates an empty JSON object that
will be filled by the isCobol program:

$Sscope.customer={};
Also, the controller defines methods to handle the buttons placed in the form, used for
data navigation and processing. For example, the getNextCustomer method calls a COBOL
entry point called AWEBX-NEXT that fetches the next customer in the dataset:

$Sscope.getNextCustomer = function() {

Shttp.get ("servlet/isCobol (AWEBX NEXT) ")
.then (function (response) {
if (response.data. comm buffer. status=="0K")
Sscope.customer = response.data. comm buffer;

13
}

Next, we need to bind the page, or a section of a page, to a controller. In this sample we
bind the CustomerCtrl (Customer Controller) to a div, this means that each control inside
the div will have access to the model and methods defined in the controller. The binding is
done using the directive

<div class="container" ng-controller="CustomersCtrl">

inside the <div...> tag right after the body.

© Copyright 2014 Veryant. All rights reserved. Page 33 of 85

isCOBOL Enterprise Information System 2014 R1

Inside the div we define an HTML form, which will be handled by the CustomerCtrl as well.
This is done by specifying the directive ng-action="performSearch()" inside the form. Form

submission will trigger the PerformSearch method of the controller:

<form ng-submit="performSearch()" class="form-inline" role="form">

Notice how each button in the form is bound to a method in the controller, meaning that
the click will be handled by the method specified in the ng-click directive. Each INPUT tag
in the form is bound to one of the data model defined in the controller. In this tutorial we

only have one model: customer.

The structure of this model is defined in the AWEBX.cbl COBOL source code. Each time
AWEBX.cbl is executed it returns the "response” record, which contains status about the

performed operation and a customer record:

comm-buffer identified by " comm buffer".
03 filler identified by " status".
05 response-status pic x(2).
03 filler identified by " message".
05 response-message pic x any length.
03 filler identified by "name'.
05 Json-name pic x any length.
03 filler identified by "surname".
05 Json-surname pic x any length.
03 filler identified by "email".
05 Json-email pic x any length.
03 filler identified by "country".
05 Json-country pic x any length.

Let's examine how the processing of a web request is done in an Angular controller:

Take a look at the getNextCustomer method:

Sscope.getNextCustomer = function() {
Shttp.get ("servlet/isCobol (AWEBX NEXT)")
.then (function (response) {
if (response.data. comm buffer. status=="O0K")
Sscope.customer = response.data. comm buffer;
13}
}

It calls the isCOBOL program, using the entry point AWEBX_NEXT. This call is
asynchronous, meaning that the javascript code will continue executing while the http
object is fetching the data.

When the server returns with data (or an error), the .then() method will be called.

© Copyright 2014 Veryant. All rights reserved. Page 34 of 85

isCOBOL Enterprise Information System 2014 R1

The .then method expects as a parameter a function which receives a response object as
its own parameter. The response.data field contains the response model defined in the
AWEBX.cbl file.

The function needs to check if the fetch operation was successful:

if (response.data. comm buffer. status=="OK")

and, if so, it will extract the customer model and make it available in the controller:

Sscope.customer = response.data. comm buffer;

This will automatically display the model data in the input tags of the form. Each input has
a ng-model directive, which holds the field that will be bound to the edit field :

<input type="text" class="form-control"
ng-model="customer.name"
id="edFirstname" style="width:280px" />

As the user modifies the content of the input field, the model in the controller is
automatically updated.

So, all we need to do in order to save the changes is to post the model to the isCOBOL
program.

This is done in the saveCustomer (or newCustomer) method of the controller. All we need
to do is call the isCOBOL program, using the right entry point, AWEBX_UPDATE
(AWEBX_INSERT), and pass it the customer model :

Sscope.saveCustomer = function() {
callServerWithJson ("AWEBX UPDATE",
$Sscope.customer, $scope.onSuccess, $scope.onError);

}

The callServerWithJson utility method accepts the entry point to call, a model to pass to
the isCOBOL program, and 2 callbacks, that specify the function to execute if the http
request is successful onSuccess, or if it fails onError.

Notice that the onSuccess will be called even if the isCOBOL program generates and error
(duplicated key, record locked, and so on). This is because the HTTP request was carried
out successfully, but a logical program error occurred. So the onSuccess method needs to
check the response object and handle it appropriately.

The onkError callback will be invoked only if the http request fails (network error, server
error,...)

© Copyright 2014 Veryant. All rights reserved. Page 35 of 85

isCOBOL Enterprise Information System 2014 R1

isCOBOL EIS (Enterprise Information System), COBOL Servlet option (OOP)

One of the initial purposes of the Java language was to enable programmers to make Web
pages more interactive by embedding programs called applets. When a browser loads a
Web page containing an applet, the browser downloads the applet byte code and
executes it on the client machine. However, because of client compatibility, bandwidth,
security and other issues, businesses needed an alternative solution where Web pages

could be made to interact with server-side instead of client-side Java programs.

Server-side Java programming solves problems associated with applets. A servlet can be
thought of as a server-side applet. However, when the code is executed on the server-side,
there are no issues with browser compatibility or download times. The servlet byte code
runs entirely on the server and only sends information to the client in a form that the client

can understand.

Similar to a CGIl program, a servlet takes requests from a client such as a Web browser,
accesses data, applies business logic, and returns the results.

The servlet is loaded and executed by the Web server, and the client communicates with
the servlet through the Web server using HTTP requests. This means that if your Web
server is behind a firewall, your servlet is secure.

Servlet technology was developed to improve upon and replace CGI programs. Servlet
technology is superior to CGI but uses the same HTML code. So you can switch from CGlI
programs to servlets on the back-end without having to change the programming on the

front-end. Servlets use the CGI protocol.

In addition to Java technology's platform independence and promise of write once, run
anywhere, servlets have other advantages over CGIl programs:

e Servlets are persistent. They are loaded only once by the Web server and can maintain

services such as database connections between requests.

e Servlets are fast. They need to be loaded only once by the Web server. They handle
concurrent requests on multiple threads rather than in multiple processes. Thus,
applications with servlets perform better and are more scalable than the same

applications using CGI programs.
e Servlets are platform and Web server independent.

e Servlets can be used with a variety of clients, not just Web browsers.

© Copyright 2014 Veryant. All rights reserved. Page 36 of 85

isCOBOL Enterprise Information System 2014 R1

e Servlets can be used with a variety of client-side and server-side Web programming
techniques and languages.

The isCOBOL EIS introduces a new way to develop COBOL programs that acts like java

servlet using HTTPHandler class functionality.

One of the most remarkable differences between COBOL servlets and CGI programs is that
Web servers automatically maintain user session state for servlets. This means that the
COBOL servlet can store user-session specific information in a user session object and

retrieve that information on a subsequent call.

The isCOBOL EIS Framework uses this feature to associate the user session with a COBOL
thread context. This makes sure that the same instances of COBOL programs get used
each time they are called during a particular user session. In other words, COBOL programs
called during a particular user session retain their file states and working-storage data
between requests from that user session. If desired, the programmer can cancel the
program at any time with the CANCEL statement. In fact, at first it will be necessary to
cancel old CGI programs because they were written to assume that they have been
cancelled between calls. Later, the CANCEL statement can be removed as the old CGl

programs are updated to make use of the Stateful nature of COBOL servlets.

© Copyright 2014 Veryant. All rights reserved. Page 37 of 85

isCOBOL Enterprise Information System 2014 R1

COBOL Servlet Programming

Following you will find an explanation about how to develop a simple COBOL servlet that
builds an HTML page using a header.htm page and a footer.htm page, filling them with
the correct message and sending a text string between them, the string is “Hello world
from isCOBOL!".

The Web Servlet container used for this example is Tomcat 7.
This program needs to take the following steps:
o Create a folder called doctest with the following structure:
doctest/
WEB-INF/
classes
lib

o Create a file called web.xml in doctest/WEB-INF folder with the following content:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd" id="WebApp_ ID"
version="2.5">
<display-name>isCOBOL EIS</display-name>
<welcome-file-list>
<welcome-file>Hello.htm</welcome-file>
</welcome-file-list>
<filter>
<filter-name>isCOBOL filter</filter-name>
<filter-class>com.iscobol.web.IscobolFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>isCOBOL filter</filter-name>
<url-pattern>/servlet/*</url-pattern>
</filter-mapping>
<servlet>
<servlet-name>isCobol</servlet-name>
<servlet-class>com.iscobol.web.IscobolServletCall</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>isCobol</servlet-name>
<url-pattern>/servlet/*</url-pattern>
</servlet-mapping>
<listener>
<listener-class>com.iscobol.web.IscobolSessionListener</listener-class>
</listener>
</web-app>

© Copyright 2014 Veryant. All rights reserved. Page 38 of 85

http://www.w3.org/2001/XMLSchema-instance

isCOBOL Enterprise Information System 2014 R1

o Create a Hello.htm web form to call a COBOL servlet called HELLO:

<HTML><HEAD><TITLE>Doc isCOBOL Example</TITLE></HEAD>
<BODY>
<H2>Doc 1isCOBOL Example.</H2>
<H3>This example shows how easily you can compose an HTML page with an isCOBOL
program running on the web server. The HTML page is composed by two parts an
header and a footer. In every part of the HTML page, the isCOBOL program moves
a message and between the two sends the text: "Hello world from isCOBOL".</H3>
<HR size="2">
<FORM method="post" action="servlet/isCobol (HELLO) ">

<p><input type="submit" value="Invoke 1isCOBOL HELLO program" /></p>
</FORM>

Note that in POST method of HTML form there is the call of the COBOL Servlet called HELLO.

o Create a Header.htm as follow:

<HTML>

<HEAD><TITLE>CGI Header</TITLE></HEAD>

<BODY>

<CENTER>

<H1>This is the Header HTM form of this i1sCOBOL example</HIl

<H2>This is the message sent by the isCOBOL program: $%$%opening-message$%$</H2>
<HR>

Note that this form displays the top of the HTML page that the program HELLO.cbl will
build; as we can see, the <HTML>, <BODY> and <CENTER> tags are not closed, and
there is the string %%opening-message%% that will be managed and replaced by
the COBOL servlet program

o Create a Footer.htm web form as follow:

</CENTER>

<HR>

This is the footer HTML page of this isCOBOL example.

<H2>This is the message sent by the program: %%closing-message%%</H2>
</BODY></HTML>

Note that this form displays the bottom of the HTML page that the program
HELLO.cbl will build. Here the tags <HTML>, <BODY> and <CENTER> are closed and
there is the string %%closing-message% % that will be managed and replaced by the
COBOL servlet program.

© Copyright 2014 Veryant. All rights reserved. Page 39 of 85

isCOBOL Enterprise Information System 2014 R1

o Create a HELLO.cbl COBOL Servlet program as follows:

PROGRAM-ID. HELLO initial.

CONFIGURATION SECTION.

REPOSITORY.

class web-area as "com.iscobol.rts.HTTPHandler"

WORKING-STORAGE SECTION.
01 hello-buffer pic x(40) wvalue "Hello World from isCOBOL!™".
01 rc pic 9.
01 html-header-form identified by "Header".
05 identified by "opening-message".
10 opening-message pic x(40).
01 html-footer-form identified by "Footer".
05 identified by "closing-message".
10 closing-message pic x(40).

LINKAGE SECTION.

01l comm-area object reference web-area.

PROCEDURE DIVISION using comm-area.

MAIN-LOGIC.
move "This is the header" to opening-message
set rc = comm-area:>processHtmlFile (html-header-form).
comm-area:>displayText (hello-buffer).
move "Bye Bye by isCOBOL" to closing-message
set rc = comm-area:>processHtmlFile (html-footer-form).
goback.

Note that the COBOL servlet does the following steps:

o Move the value “This is the header” to the variable opening-message of the
structure prepared for Header.htm

o Add to the HTML page source (that currently is empty) the Header.htm form
replacing the string %%opening-message%% by the opening-message variable
value

o Add to the HTML page the text “Hello world from isCOBOL!”

o Move the value “Bye Bye by isCOBOL” to the variable closing-message of the
structure prepared for Footer.htm

o Add to the HTML page source the Footer.htm form replacing the string
%%closing-message%% by the closing-message variable value

at the exit of the program, the page HTML will be sent to the Web Server.

o Compile HELLO.cbl without particular option and copy HELLO.class under
doctest/WEB-IF/classes folder

o Create a iscobol.properties file under doctest/WEB-IF/classes folder with a property to

inform isCOBOL EIS framework of the path of all HTML useful files:
iscobol.http.html template prefix=webapps/doctest

© Copyright 2014 Veryant. All rights reserved. Page 40 of 85

isCOBOL Enterprise Information System 2014 R1

o Create a war file to be deployed in Tomcat called doctest.war that includes all files of
doctest folder. It can be done with the following command:

jar -cfv doctest.war *

Once doctest.war file is deployed correctly in Tomcat servlet container, we can try it using

http://127.0.0.1:8080/doctest, assuming to have Tomcat running on localhost using default
8080 port :

=
e‘(\f@'|@ hetp://127.0.0.1:8080/de O ~ © ||@Dnciscoam Example | | I RANTY

x Go gk’, v -"] Effettua laricerca =+

Doc isCOBOL Example.

< Altra » = Fahia Scalzatto = 9 -

This example shows how easily you can compose an HTML page with an isCOBOL
program running on the web server. The HTML page is composed by two parts an header
and a footer. In every part of the HTML page, the isCOBOL program moves a message
and between the two sends the text: "Hello world from isCOBOL".

Invoke isCOBOL Hello program |

By pressing the “Invoke isCOBOL Hello program” button, the result is:
-0

el“\-=_>:)|@ https/127.0.0.1:8080/de O ~ & H@ccmeader | ‘ i v 8

x Go glt w -"l Effettua la ricerca v~

- Altro » = Fabia Scalzotto = 9, -

This is the Header HTM form of this isCOBOL
example

This is the message sent by the 1sCOBOL pogram: This 1s the header

Hello World from 1sCOBOL!

This 1s the footer HTML page of this sCOBOL example.

This is the message sent by the program: Bye Bye by isCOBOL

© Copyright 2014 Veryant. All rights reserved. Page 41 of 85

http://127.0.0.1:8080/doctest

isCOBOL Enterprise Information System 2014 R1

COBOL Servlet Programming with AJAX and XML

AJAX (Asynchronous JavaScript and XML) is a group of interrelated Web development
techniques used on the client side to create asynchronous Web Applications. With Ajax,
Web applications can send data to, and retrieve data from, a server asynchronously (in the
background) without interfering with the display and behavior of the existing page.

Extensible Markup Language (XML) is a text format derived from Standard Generalized
Markup Language (SGML). Compared to SGML, XML is simple. HyperText Markup
Language (HTML), by comparison, is even simpler. Even so, a good reference book on
HTML is an inch thick. This is because the formatting and structuring of documents is a
complicated business.

Most of the excitement about XML is related to a new role as an interchangeable data
serialization format. XML provides two enormous advantages as a data representation
language:

o lItistext-based
o Itis position-independent

The scope of this paragraph is to show how to develop a simple web application that uses
XML stream to communicate data from COBOL servlet to a Web form.

The following example called HELLO.cbl, is located in sample/eis/http/xml folder. The
README.txt file explains how it works and how to deploy it.

This example needs to take the following steps:

o Create a HTML file called index.html that is able to establish a AJAX communication to

receive a XML stream from COBOL servlet program:

In index.html there is included a Javascript code based on JQUERY to be able to call
some COBOL servlet entry point making a GET request type (default) and receiving
XML data stream:

function callServer (cobolProg) {
var url = "servlet/isCobol (" + cobolProg + ")";
jQuery.ajax (url, {
success: handleSuccess,
error: handleError
1)
return false;

© Copyright 2014 Veryant. All rights reserved. Page 42 of 85

isCOBOL Enterprise Information System 2014 R1

o Load all COBOL Servlets using the following statement:

window.onload = callServer ('HELLO') ;
Note the when HELLO COBOL Servlet is loaded the following code executed:

move "Hello World from isCOBOL!"™ to xml-hellotext.
lnk-area:>displayXML (hello-buffer).

And XML stream is returned to Web form with displayXML() command.

Running this example the result is the following:

e@|@ http://127.0.0.1:8080/he O = & ||@iscoe.mE|SXMLcommun... X | | AR
isCOBOL EIS XML communication Sample

Hello World from 1sCOBOL!

© Copyright 2014 Veryant. All rights reserved. Page 43 of 85

isCOBOL Enterprise Information System 2014 R1

COBOL Servlet Programming with AJAX and JSON

JSON or JavaScript Object Notation, is an open standard format that uses text easy to
understand to transmit data objects consisting of attribute-value pairs. It is used primarily
to transmit data between a server and web application, as an alternative to XML.

Although originally derived from the JavaScript scripting language, JSON is an
independent data format, and code for parsing and generating JSON data is readily

available in a large variety of programming languages.

Here we will show how to develop a simple web application of data file management that
uses JSON stream to communicate data from COBOL servlet to HTML pages.

The following example is located in sample/eis/http/json folder. The README.txt file
explains how it works and how to deploy it.

This example needs to take the following steps:

o Having a HTML file that is able to establish a AJAX communication using JSON stream
to a COBOL servlet program:

In awebx.htm there is included a Javascript code based on JQUERY to be able to call
some COBOL servlet entry point making a GET request type (default) and receiving
JSON data stream:

function callServer (cobolProg) {

var url = "servlet/isCobol (" + cobolProg + ")";
var parm = $("form").serialize();
$.ajax (url, {

success: handleSuccess,

error: handleError,

data: parm

}) i

return false;

© Copyright 2014 Veryant. All rights reserved. Page 44 of 85

http://en.wikipedia.org/wiki/Parsing

isCOBOL Enterprise Information System 2014 R1

o Load all COBOL Servlet entry points using the following statement:

callServer ("AWEBX") ;

// program initialization

Note the once AWEBX COBOL Servlet is loaded the INIT paragraph is executed:

INIT.
set declaratives-off to true.

move low-values to r-awebx-email.

open i-o awebxfile.

set declaratives-on to true.

if file-status > "0z"
open output awebxfile
close awebxfile
open i-o awebxfile.

comm-area:>displayJSON
goback.
O
clicked :
<input type="submit" value="Insert"
<input type="submit" value="Search"
<input type="submit" value="Next"
<input type="submit" value="Update"
<input type="submit" value="Delete"

and file-status not =

(ok-page) .

onclick="return
onclick="return
onclick="return
onclick="return
onclick="return

LV/NRl

associates to every HTML button a AWEBX entry point to be executed when the button is

callServer ('AWEBX INSERT') ;">
callServer ('AWEBX SEARCH') ;">
callServer ("AWEBX NEXT') ;">

callServer ('AWEBX UPDATE') ;">
callServer ('AWEBX DELETE') ;">

Note that the above HTML is able to call the following COBOL servlet entry-point:

INSERT-VALUES.

entry "AWEBX INSERT" using comm-area.

goback.

SEARCH-VALUES.

entry "AWEBX SEARCH" using comm-area.

goback.

NEXT-VALUES.

entry "AWEBX NEXT" using comm-area.

goback.

UPDATE-VALUES.

entry "AWEBX UPDATE" using comm-area.

goback.

© Copyright 2014 Veryant. All rights reserved.

Page 45 of 85

isCOBOL Enterprise Information System 2014 R1

o Define in HTML some fields to input data suitable for data management like name, surname,
email, country etc:

<input type="text" name="name" size="25" placeholder="Name"/>

<input type='"text'" name="surname'" size="25" placeholder="Surname"/>

<input type="text" name="email" size="25" placeholder="E-mail"/>

<select name="country" placeholder="Country">

<option value="" selected="selected" disabled="disabled">Country</option>

<option value="us'">US</option>

<option value="it">Italy</option>

<option value="fi">Finland</option>

<option value="nl">The Netherlands</option>

<option value="de'">Germany</option>

<option value="fr">France</option>

<option value="sp">Spain</option>

<option value="uk">United Kingdom</option>
</select>

o On COBOL Servlet create a working storage structure that matches the field name of

previous HTML. It can be done with identified by clause:

01 comm-buffer identified by " comm buffer".
03 filler identified by " status".
05 response-status pic x(2).
03 filler identified by " message".
05 response-message pic x any length.
03 filler identified by "name".
05 Jjson-name pic x any length.
03 filler identified by "surname".
05 Jjson-surname pic x any length.
03 filler identified by "email".
05 Jjson-email pic x any length.
03 filler identified by "country".
05 Jjson-country pic x any length.

o On COBOL Servlet manage GET request by accept() answering with a JSON stream by
displayJSON(). For example if “insert” is submitted the following entry point is invoked:

INSERT-VALUES.

entry "AWEBX INSERT" using comm-area.

comm-area:>accept (comm-buffer) .

move spaces to error-status.

perform check-values.

if error-status = spaces
move json-name to r-awebx-name
move json-surname to r-awebx-surname
move json-email to r-awebx-email
move json-country to r-awebx-country
write rec-awebxfile
move "Operation successful" to ok-message;;
comm-area:>displayJSON (ok-page)

else
comm-area:>displayJSON (error-page) .

goback.

© Copyright 2014 Veryant. All rights reserved. Page 46 of 85

isCOBOL Enterprise Information System 2014 R1

o Inasimilar way when a “next” command is submitted, the records are retuning back

as JSON stream with displayJSON() command:

NEXT-VALUES.
entry "AWEBX NEXT" using comm-area.
read awebxfile next

move r-—awebx-name to json-name
move r-awebx-surname to json-surname
move r-—awebx-email to json-email

move r—awebx-country to json-country
move "OK" to response-status

move "" to response-message;;
comm-area:>displayJSON (comm-buffer).
goback.

This is the output form of awebx.htm used in previous example:

e@|@ http://127.0.0.1:8080/aw o~ || @ Registry example X

Name

Surname

E-mail
Country v
Insert || Search || Next || Update || Delete || Clear || Exit |

Print all

© Copyright 2014 Veryant. All rights reserved. Page 47 of 85

isCOBOL Enterprise Information System 2014 R1

COBOL Servlet Programming to replace CGl COBOL programming

The scope of this paragraph is to show how to migrate older CGI COBOL program to

isCOBOL Servlet taking advantage of useful features of HTTPHandler class. Usually few

changes are required and most of the sources will be unchanged.

The following example is located in sample/eis/http/getpost/acucgi2is folder. The

README.txt file explains how it works and how to deploy it.

This example needs to take the following steps:

o Having COBOL Servlet invocation in POST form action to specify the name of COBOL

program that acts like CGI program:

<FORM method="post" action="servlet/isCobol (ISOSCARS) ">

o Assuming to have a Web form called oscars.htm with the following controls:

<input
<input
<input
<input
<P>

<input
<input
<input
<input
<P>

<input
<input
<input
<input
<p>

<input

Checking one or more years and pressing the 'Submit query' button, the ISOSCARS
COBOL servlet program is called and it uses the HTTPHandler class to communicate

type=checkbox
type=checkbox
type=checkbox
type=checkbox

type=checkbox
type=checkbox
type=checkbox
type=checkbox

type=checkbox
type=checkbox
type=checkbox
type=checkbox

type="submit”

with the Web form.

name=y1996
name=y1995
name=y1994
name=y1993

name=y1992
name=y1991
name=y1990
name=y1989

name=y1988
name=y1987
name=y1986
name=y1985

value=1996>
value=1995>
value=1994>
value=1993>

value=1992>
value=1991>
value=1990>
value=1989>

value=1988>
value=1987>
value=1986>
value=1985>

value=”Submit Query” >

1996
1995
1994
1993

1992
1991
1990
1989

1988
1987
1986
1985

o The old ACUCOBOL-GT CGl program should be changed in order to be transformed in
a COBOL servlet :

O

Include the HTTPHandler class in beginning of COBOL CGI program:

configuration section.
repository.

class web-area as

© Copyright 2014 Veryant. All rights reserved.

"com.iscobol.rts.HTTPHandler"

Page 48 of 85

isCOBOL Enterprise Information System 2014 R1

O

© Copyright 2014 Veryant. All rights reserved.

In order to be able to accept the HTML page input, cgi-form is defined as
follows:

01 cgi-form identified by "cgi-form".
05 identified by "y1996".
10 y1996 pic x(5).
05 identified by "y1995".
10 y1995 pic x(5).
05 identified by "y1994".
10 y1994 pic x(5).
05 identified by "y1993".
10 y1993 pic x(5).
05 identified by "y1992".
10 y1992 pic x(5).
05 identified by "y1991".
10 y1991 pic x(5).
05 identified by "y1990".
10 y1990 pic x(5).
05 identified by "y1989".
10 y1989 pic x(5).
05 identified by "y1988".
10 y1988 pic x(5).
05 identified by "y1987".
10 y1987 pic x(5).
05 identified by "y1986".
10 y1986 pic x(5).
05 identified by "y1985".
10 y1985 pic x(5).

Then accept() should be used to receive parameters into working storage
replacing legacy ACCEPT:

linkage section.
01 comm-area object reference web-area.
procedure division using comm-area.

comm-area:>accept (cgi-form) .
Depending on the input field received by the accept statement, the program
fills the HTML page to send. First of all it sends the header using the following

statement:
move "CGI in action." to opening-message
set rc = comm-area:>processHtmlFile (html-header-form)

where html-header-form is defined as follows:

01 html-header-form identified by "header".
05 identified by "opening-message".
10 opening-message pic x(40).

The strings specified with the identified by clause are the name of the page
and the name of the fields in it. So the header.htm page is used. The string
%%opening-message%% is replaced by the opening-message variable value.
The legacy DISPLAY should be replaced with processHTMLFile() statement.

Page 49 of 85

isCOBOL Enterprise Information System 2014 R1

The program ISOSCARS goes ahead and adds the body.htm page after the replacement of
the values of the years requested have been applied. In the same way footer.htm is added
at the end. The result choosing 1994, 1992 and 1986 is the following:

e;:}"@ http://127.0.0.1:8080/ac D~ H @ Gl Header ‘ | ;U’ﬁ e g;:}
CGI in action.

Oscar Winners

Your Selections

Year Best Movie Best Actor Best Actress
1994 F?}UNIES' T Tom Hanks FORREST GUMP Jessica Lange BLUE SKY

1992 | UNFORGIVEN | AlPacino SCENT OF A WOMAN Emma Thompson HOWARDS END

Paul Newman THE COLOR. OF Marlin Matlin CHILDREN OF A LESSER
MONEY GOD

1986 PLATOON

THE END.

The information vou requested was processed by the CGI program. Following the CGI standard, 1sCOBOL was
able to send the requested data ttems to the appropriate templates and return the completed HTML document
back to yvou.

Using the above approach is also possible to migrate a Micro Focus COBOL CGI program
to COBOL Servlet.

Under sample/eis/http/getpost/ mfcgi2is folder you find an example of a Micro Focus
Cobol CGI program rewritten to run with the HTTP option of isCOBOL EIS.

The README.txt file explains how it works and how to deploy it.

© Copyright 2014 Veryant. All rights reserved. Page 50 of 85

isCOBOL Enterprise Information System 2014 R1

isCOBOL EIS (Enterprise Information System), Web Direct 2.0 option

With isCOBOL EIS WebDirect 2 option your organization can leverage existing COBOL
syntax to develop and deploy a universally accessible, zero client, rich Internet application
(RIA) using standard COBOL screen sections and existing program procedure flow. No
knowledge of object-oriented programming, JavaScript, HTML, or other Web languages is

required.

isCOBOL EIS Web Direct 2.0 (EIS WD2) is a Java framework for presenting a "graphical” user
interface, composed of elements such as windows, dialogs, menus, text fields and buttons,
inside a Web Browser. This technology uses AJAX (asynchronous JavaScript and XML)
techniques and the Comet web application model. The web application is deployed as a
Servlet and therefore requires a Java-enabled web server, one that implements the Java

Servlet specification from Sun Microsystems

isCOBOL EIS Web Direct 2.0 takes advantages of ZK libraries, installed with the product. ZK
is an event-driven, component-based framework to enable rich user interfaces for Web
applications. ZK includes an AJAX[1]-based event-driven engine, a rich component set of
XUL and XHTML and a markup language called ZUML (ZK User Interface Markup
Language).

Technical Notes

EIS WD2 on the client side is a JavaScript application running inside a web browser. This
environment has many limitations in comparison with a full GUI environment, e.g. only a
few events are generated. JavaScript is a script language so its performance is not as good
as compiled languages, although latest generation browsers are improving performance
by the use of JIT (Just In Time) compilers.

EIS WD2 was not developed from scratch; it uses a library, ZK, that hides the JavaScript
implementation and exposes a Java API. Veryant interfaces our set of GUI controls with the
ones implemented in ZK. As a result, because our controls are similar to those provided by
ZK, future updates will require less effort and provide more stable releases interfacing with
ZK GUI controls. Alternatively, controls completely different from the ZK controls will
require more development and testing time.

The client/server communication is performed through the HTTP protocol; since this
protocol is very limited in functionality, a special technique (called "COMET") has been

used in order to get the needed functionality. This technology is the up-to-date best

© Copyright 2014 Veryant. All rights reserved. Page 51 of 85

isCOBOL Enterprise Information System 2014 R1

technology in this area. However its performance is not as good as native protocols. Just
as an example, it uses XML protocols, so it creates bigger messages and it requires
considerable computation resources for marshalling.

Installation Environment

In order to deploy and run programs using Web Direct 2.0, the following environment
must be set up a servlet container like Apache Tomcat.

Veryant recommends using Apache Software Foundation Tomcat version 7 for running EIS
WD2 Application.

The Apache Tomcat main page is http://tomcat.apache.org/

isCOBOL EIS WebDirect 2.0 is expected to work also on the following containers:

- IBM WebSphere

BEA WebLogic

- JBoss

- Oracle OC4J and Oracle OPMN Release 3
- Liferay

- Pluto

- Jetty

- Resin

Servlet container and Web Browser Requirements
Web Direct 2.0 runs on any web server that supports Servlet 2.3+ and JVM 1.4+.

The web browser must be able to run JavaScript and support Ajax (namely the
XMLHttpRequest object).

Examples are:
Internet Explorer 5+
Firefox 1+
Mozilla 1+
Safari 1.2+

any version of Google Chrome.

© Copyright 2014 Veryant. All rights reserved. Page 52 of 85

http://tomcat.apache.org/#_blank

isCOBOL Enterprise Information System 2014 R1

isCOBOL EIS WD2 Getting Started

The jar libraries must be copied in the proper directory in order to be available to the web
application. If you're using Tomcat, you must copy these libraries in the “lib” folder of your
web application.

Web Direct 2.0 is composed by:

o TheisCOBOL Framework : isrun.jar

o Web Direct 2.0 classes that extends the Framework: iswd2.jar
o ZKlibraries

e web.xml: also known as Deployment Descriptor. To configure servlets, listeners and
an optional filter

o zk.xml: the configuration descriptor of ZK. This file is optional. If you need to configure
ZK differently from the default, you could provide a file called zk.xml under the WEB-
INF directory.

All the above files are provided by the library wd2.war, installed in $ISCOBOL/sample/wd?2.
You can extract them with the jar command or you can deploy the sample application as

explained in the Running the sample application section.
To extract the files with the jar command, use:

jar -xf wd2.war

© Copyright 2014 Veryant. All rights reserved. Page 53 of 85

isCOBOL Enterprise Information System 2014 R1

isCOBOL EIS WD2 Running a sample application

Web Direct 2.0 comes with a sample web application. This chapter explains how to deploy

and run the sample application.

Download Tomcat from http://tomcat.apache.org/ and install it, if you haven't installed it

yet. Start the Tomcat service.

Note: if you're running Tomcat on Unix/Linux, ensure that the working directory is the
Tomcat home directory. If you start the process from another directory (e.g. the Tomcat
bin directory), then relative paths in the sample will not work.

When Tomcat service is started, open a browser and navigate to:
http://127.0.0.1:8080/ . The browser displays something like:

Home Documentation Configuration Examples Wiki Mailing Lists Find Help

Apache Tomcat/7.0.37 ™ Apache Software Foundation

http://www.apache.org/

Recommended Reading: Server Status
Security Considerations HOW-TO

Manager App
Manager Application HOW-Ti =

Clustering/Session Replication HOW-TO Host Manager

Developer Quick Start
Tomcat Setup Realms & AAA Examples Serviet Specifications
First Web Application JOBC DataSources Tomcat Versions

Select Tomcat Manager link in order to application administration pages. You will be
prompted for username and password. By default Tomcat has the user "admin" with no
password. You can refer to tomcat-users.xml

Using the Tomcat Web Application Manager, scroll down to the Deploy dialog and use the
Browse button to select the Web Application Archive file (wd2.war)

© Copyright 2014 Veryant. All rights reserved. Page 54 of 85

http://tomcat.apache.org/#_blank
http://127.0.0.1:8080/#_blank

isCOBOL Enterprise Information System 2014 R1

Deploy directory or WAR file located on server
Context Path {required). [|
XML Configuration file URL: | |
WAR or Directory URL: |

Deply

WAR file to deploy

Select WAR file to upload ' Sfogha..

Check to see if a web application has caused a memory leak on stop, reload or undeploy
Find leaks | This diagnostic check will ingger a full garbage collection. Use it with extreme caution on production systems.

Tomcat Version | JVM Version| JVMVendor | OS Name | OS Version| OS Architecture| Hostname | IP Address
Apache Tomcal/7.0.37 | 1.7.0_10-p18 | Oracle Corporation |Windows 8| 6.2 amdb4 Luciano-Veryant | 192 168.0.213

An item called "wd2" will be added to the Applications list and Tomcat will create a
structure similar to this in the webapps directory:

4 | wd2?
| META-INF
| pdf
4 | resource
). css
| images
| upload
4 | WEB-INF
arc
classes

lib

-

programs

© Copyright 2014 Veryant. All rights reserved. Page 55 of 85

isCOBOL Enterprise Information System 2014 R1

Edit the file iscobol.properties in classes’ folder to insert valid license codes.

To run the sample, open a browser and navigate to:

http://127.0.0.1:8080/wd2

Doz » Teimaiale «

&
&
Demo WD 2.0 * enabled-1 enabled-2 disabled
Radio-Butten § Check-Baox lgnabled-1 +enabled-2 disabled
Push-Button
Entry-Fiald [Data-Entry (ORed | CGreen | ®Bie |
Combo-Box f List-Box
Tree-View / Grid Check-box Bitmap Radig-button Bitmap
Simple File Handler 8 B 4 @
ZK Javabean
Window [Tab-Contral
Call rClient Information
Print POE User Agent: mazillaf5.0 fcompa_tihle: msie 10.0; windows nt = &
6.2; wows4; trident/6.0; mddcjs) “

Browser: éxolarer

© Copyright 2014 Veryant. All rights reserved.

B B

veryant

a0 e wabsits

Page 56 of 85

http://127.0.0.1:8080/wd2#_blank

isCOBOL Enterprise Information System 2014 R1

isCOBOL EIS WD2 Guidelines for writing a web application
Web Direct 2.0 allows bringing GUI COBOL programs into the web without specific

modification.

Each COBOL program with a Screen Section containing graphical controls can run as web
application with Web Direct 2.0.

However, not all GUI features are supported by Web Direct. If you plan to bring an existing
COBOL application into the web It is strongly suggested to compile all sources with the -
wd?2 option. In this case the isCOBOL Compiler will alert you with warning messages if an
unsupported feature is being used. You can consult the Unsupported Features chapter to
see what is not allowed by Web Direct 2.0.

In order to produce a fast web application, It is strongly suggested to:
e Reduce the number of controls in the screen
e Avoid using embedded and event procedures if not necessary

It's very important to avoid using STOP RUN statement if you plan to run your programs as
web application. STOP RUN causes the whole JVM to exit and it would result in the
shutdown of the whole servlet container. Use GOBACK instead.

© Copyright 2014 Veryant. All rights reserved. Page 57 of 85

javascript:WWHClickedPopup('User_s_Guide',%20'Chapter4-Compiler.6.2.html#1025430', '');
javascript:WWHClickedPopup('User_s_Guide',%20'Chapter4-Compiler.6.2.html#1025430', '');

isCOBOL Enterprise Information System 2014 R1

Developing a hello world application from scratch

The next chapter illustrates the steps to create a hello world application from scratch,

compile it, deploy it and eventually debug it.
Writing the source

Programs for the web are standard COBOL programs. The following source code produces

a screen with a button with “Hello World” inside:

PROGRAM-ID. HELLO.
SCREEN SECTION.
01 SCREENL.

03 PUSH-BUTTON

LINE 4
COL 4
SIZE 15

HEIGHT-IN-CELLS
WIDTH-IN-CELLS
TITLE "Hello World"
EXCEPTION-VALUE 100
PROCEDURE DIVISION.
MAIN.
DISPLAY STANDARD GRAPHICAL WINDOW.

DISPLAY SCREENI1.
ACCEPT SCREEN1 ON EXCEPTION CONTINUE.

Compiling the source

Since we plan to debug the program after the deployment, we'll use the -d option.

The -wd2 option is also used to be sure that our program is compatible with Web Direct.
iscc -d -wd2 hello.cbl

Creating the configuration file

In order to run with Web Direct 2.0 we must instruct the program to use a specific
guifactory class.

In addition, the license codes for the isCOBOL Framework and Web Direct 2.0 must be
provided, so our configuration file will look like this:
iscobol.guifactory.class=com.iscobol.gui.client.zk.GuiFactoryImpl
iscobol.license.2014=XXXXXXXXXXXXKXXXKKXKXXKKXX
iscobol.wd2.license.2014=XXXXXXXXXXXXXXXXXXKXKXXXX

The configuration file will be placed between program classes in the webapp directories.
However, the configuration is also loaded from \etc directory and from the user home

directory depending on the drive where Tomcat was started and on the user that owns its
process.

© Copyright 2014 Veryant. All rights reserved. Page 58 of 85

isCOBOL Enterprise Information System 2014 R1

Deploying in Tomcat
The easiest way to deploy a new web app is to:

Deploy the WD2 sample program as explained in Running the sample application on

Tomcat chapter

e Deploy the WD2 sample program as explained in Running the sample application on

Tomcat chapter

e Make a copy of the tomcat/webapps/wd?2 folder and rename the copy to the name of

your choice (i.e. ‘test’)
e Add your class files to one of the following:
o the WEB-INF/classes folder
o ajarfile placed in the WEB-INF/lib folder
o one of the folders listed in iscobol.code_prefix configuration property
e Add your properties to the WEB-INF/classes/iscobol.properties file
e Restart Tomcat
Running the application

From Web browser considering our program that is called HELLO, you will use the
following URL: http://127.0.0.1:8080/test/zk/IsMainZK?PROGRAM=HELLO to have:

[Hello World |

© Copyright 2014 Veryar

http://127.0.0.1:8080/test/zk/IsMainZK?PROGRAM=HELLO

isCOBOL Enterprise Information System 2014 R1

Debugging

In order to debug the web application

e Programs must be compiled with -d option

e The following entry must appear in the configuration
iscobol.rundebug=2
The Remote Debugger feature is used

When you connect to the page of your application you will see a blank page. It means that
the web application is waiting for the Debugger to connect. Launch the following
command to use the Debugger:

iscrun -J-Discobol.debug.code_prefix=sourcePath -d -r serverlp
Where:
e sourcePath is the list of paths were program source code and copyfiles can be found

e serverlpis the ip (or name) of the web-server where the web application is running, in
our case: 127.0.0.1

If everything has been done correctly, you should see the web page show up while you
debug the DISPLAY statements.

© Copyright 2014 Veryant. All rights reserved. Page 60 of 85

isCOBOL Enterprise Information System 2014 R1

Using Native Libraries inside isCOBOL EIS WD2

Usually c-treeRTG and other file handlers provide a file connector solution. When a file
connector is available, it's preferable to use it instead of using native libraries. In order to
use the file connector you just set the iscobol file.index and
iscobol.file.connector.program(.connector_name) properties to proper values in the
iscobol.properties file installed in your webapp.

If a file connector is not available or you have to use other native libraries for features not

related to file handling, proceed as follows:

e If the servlet container (Tomcat) is running on Windows, the folder containing the
native library must appear in the PATH (System PATH setting, not User PATH).
Alternatively, you can copy the necessary native libraries into the Tomcat bin folder.

e If you're working on UNIX/Linux, instead, ensure that the directory containing the
native library is listed in the library path (e.g. LD_LIBRARY_PATH, LIBPATH,
SHLIB_PATH, etc.)

For example, in a typical configuration /etc/tomcat7/tomcat7.conf sources
/usr/share/tomcat7/bin/setenv.sh which is the appropriate place to set global CLASSPATH
and LD_LIBRARY_PATH for Tomcat. In some cases, you can also set variables in
SHOME/.tomcatrc.

If you're using a container different than Tomcat, consult the documentation for the

specific product.

© Copyright 2014 Veryant. All rights reserved. Page 61 of 85

isCOBOL Enterprise Information System 2014 R1

How to receive parameters in EIS WD2
Programs can receive parameters from the URL.

Parameters must be added at the end of the URL using the syntax &PARAM_NAME=Value
and they're intercepted by the COBOL program as chaining parameters.

The following COBOL program, for example, expects 2 parameters, p1 and p2:

PROGRAM-ID. prog.

WORKING-STORAGE SECTION.

77 pl pic x(10).

77 p2 pic x(10).

PROCEDURE DIVISION chaining pl p2.

main.
display message "pl=" pl.
display message "p2=" p2.
Goback.

The parameters will be passed using a URL like:

http://127.0.0.1:8080/wd2/zk/IsMainZK?PROGRAM=PROG&P1=AAA&P2=BBB

© Copyright 2014 Veryant. All rights reserved. Page 62 of 85

http://127.0.0.1:8080/wd2/zk/IsMainZK?PROGRAM=PROG&P1=AAA&P2=BBB

isCOBOL Enterprise Information System 2014 R1

How to Handle Program Exit

By default, when the program terminates due to GOBACK statement, the last screen
remains in the web-browser, but is no longer active. This may result in the impression that
the program hanged, while it was just terminated.

The proper way to handle the program exit, is by redirecting the browser to a different
web page, that may be the page from which the application was launched or the home
page of your website or whatever else.

This objective is achieved through JavaScript.
In order to make WebDirect 2.0 execute JavaScript code:

e define a variable in the Working-Storage Section

77 MY-JAVA-SCRIPT PIC X ANY LENGTH
VALUE '<script type="text/javascript">
- '"form = document.createElement ("form") ;
- 'form.method "GET";
- 'form.action "http://www.veryant.com";
- 'form.target = " self";
- 'document.body.appendChild (form) ;
- 'form.submit () ;
- '<script>"'.

The above code redirects the browser to Veryant's home page. Change the URL
according to your needs.

¢ In Procedure Division, call WD2SRUN_JS passing the variable when you want the

JavaScript to be executed:

CALL "WD2SRUN_ JS" USINGMY-JAVA-SCRIPT

When a program is running and the user closes the browser window or someone stops the
web or application server, an exception with value 91 in crt-status is sent to program in
order to terminate the ACCEPT.

Note: always remember to use GOBACK instead of STOP-RUN to make the program exit

© Copyright 2014 Veryant. All rights reserved. Page 63 of 85

isCOBOL Enterprise Information System 2014 R1

How to Handle Event Lists

EVENT-LIST and EXCLUDE-EVENT-LIST properties work differently in Web Direct 2.0
environment.

if EXCLUDE-EVENT-LIST =1:
if EVENT-LIST is empty ALL EVENTS are NOT SENT to the program.
if EVENT-LIST is not empty:
the events in the EVENT-LIST are NOT SENT to the program.
the events NOT in the EVENT-LIST are SENT to the program.
if EXCLUDE-EVENT-LIST = 0:
if EVENT-LIST is empty ALL EVENTS are SENT to the program.
if EVENT-LIST is not empty:
the events in the EVENT-LIST are SENT to the program.

the events NOT in the EVENT-LIST are NOT SENT to the program.

© Copyright 2014 Veryant. All rights reserved. Page 64 of 85

isCOBOL Enterprise Information System 2014 R1

Customize the IES WD2 Layout through CSS

Like all web sites and web applications, the layout of programs running with Web Direct

2.0 can be customized through CSS (Cascading Style Sheets).
Style Association

Web Direct 2.0 looks for a file called iscobolwd2.css in the resource/css folder of your web

application.

If this file is found, you're allowed to use the styles described in it for your application
controls.

The css file must have the following syntax:

<css-style-name> {
<attribute>:<value>;

<attribute>:<value>;

}

In order to associate a particular style to a graphical control, you take advantage of the

Css-Style-Name property, that is supported for all controls.
This property takes a string parameter that specifies the style name.
More controls can use the same style.

If you set the property Css-Style-Name for a control, the FONT attribute, and all COLOR
attributes are not taken from the source code, but from the CSS file entry corresponding to

the tag <style name>

© Copyright 2014 Veryant. All rights reserved. Page 65 of 85

isCOBOL Enterprise Information System 2014 R1

In the example below, all GUI controls with Css-Style-Name="mystyle" will have a font
name Courier New, size of 25px, bold, a red foreground color and a green background

color.

Content iscobolwd?2.css:

.mystyle {

font-family: "Courier New';
font-size: 25px;
font-weight: bold;

color: red;

background: green;

}

content of COBOL program Screen Section:

01 SCR-SAMPLE.
05 ENTRY-FIELD ... CSS-STYLE-NAME "mystyle"
05 LABEL ... CSS-STYLE-NAME "mystyle"

DISPLAY SCR-SAMPLE.
ACCEPT SCR-SAMPLE.

The above snippets are valid for Entry-Field, Label and Frame while for other controls the
tag value in the CSS file is more complex because the control is drawn using multiple
items and it's necessary to specify which of these items has to be customized with the

style.

NOTE: If the style is invalid or not available in the css file, then an internal default style is
used, but this style doesn't match with the layout that the control has in the absence of

Css-Style-Name property.

© Copyright 2014 Veryant. All rights reserved. Page 66 of 85

isCOBOL Enterprise Information System 2014 R1

Styles for Complex Controls

Radio-Button, Check-Box, Combo-Box, List-Box and Push-Button are complex controls in
Web Direct 2.0 environment, because they are composed by multiple native ZK controls.
For example, if you need to apply the “font-size:25px;” to a Radio-Button, you will not

write:

.mystyle {
font-size: 25px;
}

But, instead:

.mystyle,
.mystyle .z-radio-cnt {
font-size: 25px;

}

Because the Radio-Button control is rendered in the web page using different items,
including z-radio-cnt, that holds the button title.

The following table specifies the item (or the items) you can configure for complex control:
Control Item
z-checkbox-cnt
z-combobox-inp
z-combobox-pp
z-combo-item-text
z-list-header-cnt
z-list-cell-cnt
z-button-tl
z-button-tr
z-button-bl
z-button-br
z-button-tm
z-button-bm
z-button-cl
z-button-cr

z-button-cm

z-radio-cnt

© Copyright 2014 Veryant. All rights reserved. Page 67 of 85

isCOBOL Enterprise Information System 2014 R1

The Frame control can be completely redrawn with CSS.

For example, if you need rounded corners, you can define a style name "myframerounded"
as follows:

.myframerounded {

background-color: blue;

border: solid gray;

-webkit-border-top-left-radius: I18px;

-webkit-border-top-right-radius: 18px;

-webkit-border-bottom-left-radius: 18px;

-webkit-border-bottom-right-radius: 18px;

-moz-border-radius: 18px 18px 18px 18px;
border-radius: 18px 18px 18px 18px;

and then apply the "myframerounded" style to your Frames through Css-Style-Name
property.

The result is that Frames will have rounded corners, a solid gray border and a blue
background color.

© Copyright 2014 Veryant. All rights reserved. Page 68 of 85

isCOBOL Enterprise Information System 2014 R1

Advanced CSS For Push Button
The Push-Button control is also easily affected by CSS.

For example, if you want a button with rounded corners and a color that changes from
green to yellow and the text shadow, you can use the following style:

.mybtn .z-button-tl, .mybtn .z-button-tr,

.mybtn .z-button-bl, .mybtn .z-button-br,

.mybtn .z-button-tm, .mybtn .z-button-bm,

.mybtn .z-button-cl, .mybtn .z-button-cr,

.mybtn .z-button-cm {

background-image:none;

}

.mybtn {
border: outset;
font-family: Helvetica;
font-size: 20px;
font-weight: bold;
text-shadow: Opx Ipx Opx #fff;
background-image: -webkit-gradient (linear, left top, left bottom,

from (#fbeb07), to(#4ffb05));
filter:progid:DXImageTransform.Microsoft.Gradient
(GradientType=0,StartColorStr="#fbeb07',EndColorStr="#4ffb05");

background-image: -moz-linear-gradient (left, green, yellow);
-webkit-border-top-left-radius: 18px;
-webkit-border-top-right-radius: 18px;
-webkit-border-bottom-left-radius: 18px;
-webkit-border-bottom-right-radius: 18px;
border-radius: 18px 18px 18px 18px;
-moz-border-radius: 18px 18px 18px 18px;

The first part removes the background image from each Push-Button item so the borders
disappear. The second part applies the desired effect.

© Copyright 2014 Veryant. All rights reserved. Page 69 of 85

isCOBOL Enterprise Information System 2014 R1

isCOBOL EIS Troubleshooting

This chapter lists the most common errors that may appear while working with isCOBOL
EIS.

o Tomcat startup errors

If a connection error occurs and the browser cannot load the page with the COBOL

application, ensure that Tomcat is correctly started.

Information on Tomcat startup errors can be found in catalina.currentdate.log file in

Tomcat's logs directory.
e Blank page

If an empty blank screen appears in place of the COBOL application, it could mean that
WD2 could not initialize the program correctly. Error messages that help
troubleshooting the cause of the problem can be found in the stdout_currentdate.log,

stderr_currentdate.log and localhost.currentdate.log files in Tomcat’s logs directory.

"Missing License" is a common problem that causes blank screen. Check that the
iscobol.wd2.license.2012 property is set in /etc/iscobol.properties or in the web
application's WEB-INF/classes/iscobol.properties file.

The blank page may also be caused by the application waiting for Debugger, if
iscobol.rundebug property is set in the configuration.

Also, the blank page may be caused by the web application terminating before the
first DISPLAY, for example due to i/o errors. Remote debugging can help in this case.

e HTTP errors

When an error occurs in the web application, it usually causes HTTP ERRORS like 404
and 500.

In order to retrieve the full Exception stack, consult the localhost.currentdate.log file in
Tomcat's logs directory.

© Copyright 2014 Veryant. All rights reserved. Page 70 of 85

isCOBOL Enterprise Information System 2014 R1

isCOBOL EIS Tomcat Installation

In order to host isCOBOL EIS COBOL Servlets, you need to install and run a Servlet

container. There are many Servlet containers available.

You can see lists and comparisons of Servlet containers at
http://en.wikipedia.org/wiki/Comparison_of_web_servers

(Search for "Yes" in the Servlet Feature column) and
http://en.wikipedia.org/wiki/Comparison_of_application_servers
(Search for a version number in the Servlet Spec column)

Veryant has tested and recommends Apache Tomcat 7.

The Apache Tomcat main page is http.//tomcat.apache.org/

Here are some steps to download and install Tomcat 7 on Windows:

NOTE - To avoid problems, uninstall earlier versions of the Tomcat service before installing

Tomcat 7

e Make sure that you already have installed JDK 5 or 6 and isCOBOL Evolve

Visit http://tomcat.apache.org/

Click on the Tomcat 7.x Download link (on the left menu)

Find the Binary Distributions section and click on the Windows Service Installer link

Run the downloaded executable file and follow the prompts accepting the defaults

© Copyright 2014 Veryant. All rights reserved. Page 71 of 85

http://en.wikipedia.org/wiki/Comparison_of_web_servers#_blank
http://en.wikipedia.org/wiki/Comparison_of_application_servers#_blank
http://tomcat.apache.org/#_blank
http://tomcat.apache.org/#_blank
http://tomcat.apache.org/#_blank

isCOBOL Enterprise Information System 2014 R1

Configure Tomcat to use the isCOBOL EIS framework

SCATALINA_HOME is the Tomcat installation directory. The default location on Windows
is:

C:\Program Files\Apache Software Foundation\Tomcat 7.0

To configure Tomcat to use the isCOBOL Runtime Framework on Windows you can
change the value of the shared.loader property in
SCATALINA_HOME/conf/catalina.properties to the following:

shared.loader=/program\ files/veryant/iscobol2014R1/lib/isrun.jar;/program\
files/veryant/iscobol2014R1/lib/ishttp.jar

On Unix, set the CLASSPATH in Tomcat's startup environment to include isrun.jar. For
example, on Linux add the following line to /etc/tomcat7/tomcat7.conf or other script
called during the Tomcat startup:

CLASSPATH=SISCOBOL/lib/isrun.jar:51ISCOBOL/lib/ishttp.jar:SCLASSPATH;
export CLASSPATH

Make sure that you have a valid license for isCOBOL Evolve in /etc/iscobol.properties (i.e.
iscobol.license.<release year>=<license key>) or in the iscobol.properties in the home
directory for the user that starts Tomcat.

© Copyright 2014 Veryant. All rights reserved. Page 72 of 85

isCOBOL Enterprise Information System 2014 R1

Appendix
HTTPHandler class (com.iscobol.rts. HTTPHandler)

The HTTPHandler is an internal class that provides a communication bridge between
COBOL programs and HTML5/Javascript pages using the HTTP protocol

General rules
A reference to HTTPHandler should be defined in the program Linkage Section.

Code example.

configuration section.
repository.
Class HTTPHandler as "com.iscobol.rts.HTTPHandler".

linkage section.
77 objHTTPHandler object reference HTTPHandler.

Features available in HTTPHandler class:
e accept (params), receives parameters from the HTTP

Syntax rules:

o paramsis alevel 01 data item for which the IS IDENTIFIED clause has been used.

Generals rules:

o params elements name matches with the name of the parameter passed by the

HTTP client.

o acceptAllParameters (params), receives a list of all parameters followed by their

value. This is useful to monitor what is actually passed by the HTTP client.

Syntax rules:

o params is an alphanumeric data item. It's good practice to use items with picture X

ANY LENGTH for this purpose.

General rules:

o Asingle buffer is returned by this method. The buffer contains all the parameters

name followed by their respective value.

© Copyright 2014 Veryant. All rights reserved.

Page 73 of 85

isCOBOL Enterprise Information System 2014 R1

o acceptFromJSON (params), receives parameters from the HTTP assuming that

they're passed as a JSON stream.

Syntax rules

o paramsisalevel 01 data item for which the IS IDENTIFIED clause has been used.
General rules

o Asingle buffer is returned by this method. The buffer contains all the parameters

names followed by their respective value.

o acceptFromXML (params), receives parameters from the HTTP assuming that they're

passed as an XML stream

Syntax rules

o paramsis alevel 01 data item for which the IS IDENTIFIED clause has been used.
General rules

o params elements name matches with the name of the parameter passed by the
HTTP client.

o addOutHeader (name, value), adds an item to the response HTTP header
Syntax rules
o name and value are alphanumeric data items or literals.

o displayBinaryFile (fileName, mimeType), returns the content of a binary file as
response to the HTTP client. The file is treated as a sequence of bytes, no unicode
conversion is applied.

Syntax rules
o fileName and mimeType are alphanumeric data items
General rules

o It's good practice to provide a valid MIME type along with the file name.

© Copyright 2014 Veryant. All rights reserved. Page 74 of 85

isCOBOL Enterprise Information System 2014 R1

o displayError (errNum, errText), returns a numeric error code to the HTTP client
Syntax rules
o errNum is a numeric data item or literal
o errTextis an alphanumeric data item or literal.
General rules

o You should provide a valid HTTP status code as described in the latest HTTP/1.1
RFC at page 39.

o displayHTML (html, docType), returns a HTML stream to the HTTP client
Syntax rules
o htmlisalevel 01 data item for which the IS IDENTIFIED clause has been used.
o docType is an alphanumeric data item or literal.
General rules

o html data item must be identified by html tags, in particular the item at level 01
must be IDENTIFIED BY “HTML”

o docType specifies the <IDOCTYPE> declaration as described here. It might be null
o the MIME type “text/html” is automatically applied
o displayText (text), returns raw text to the HTTP client
Syntax rules
o textis an alphanumeric data item or literal
General rules
o the MIME type “text/plain” is automatically applied

o displayTextFile (fileName, mimeType), returns the content of a binary file as

response to the HTTP client. The file is processed using the current encoding.
Syntax rules

o fileName and mimeType are alphanumeric data items.

General rules

o It's good practice to provide a valid MIME type along with the file name

© Copyright 2014 Veryant. All rights reserved. Page 75 of 85

isCOBOL Enterprise Information System 2014 R1

o displayTextFile (filename), returns the content of a binary file as response to the

HTTP client. The file is processed using the current encoding.
Syntax rules
o fileName are alphanumeric data items.
General rules
o text/plan MIME type is automatically provided
o displayXML (xml), returns a XML stream to the HTTP client
Syntax rules
o xmlisalevel 01 data item for which the IS IDENTIFIED clause has been used
General rules
o the MIME type “text/xml” is automatically applied
o displayJSON (json), returns a JSON stream to the HTTP client
Syntax rules
o jsonisalevel 01 data item for which the IS IDENTIFIED clause has been used
e getError (), to return the HTTP errors, usually 0 means no error.
e getHeader (name), to read the value of a specific item in the HTTP header
Syntax rules
o nameis an alphanumeric data item or literal

e getinputParameter (name), to read the value of a specific parameter in the HTTP
request.

Syntax rules
o hameis an alphanumeric data item that contain HTTP parameter name

e getOutputMimeType (), to return the value of mime type before to send the HTML
page.

o getOutputMessage (), to return the value of data to be sent to the HTTP client

© Copyright 2014 Veryant. All rights reserved. Page 76 of 85

isCOBOL Enterprise Information System 2014 R1

o getResponseType (), to return the following values
o 0, Normal
o 1,Error
o 2, Redirection

o getintHeader (name), to read the value of a specific item in the HTTP header

assuming that it's an integer number
Syntax rules
o hameis an alphanumeric data item or literal

¢ invalidateSession (), to invalidate the current HTTP session and removes all session
data. This is the correct way to terminate the whole application. Such method should
be associated to the “Exit” function of your application.

e boolean isRedirect (), to tell if a redirect has been issued or not.
Code Example
if objHTTPHandler:>isRedirect()
*> a redirect has been issued
else
*> a redirect has not been issued

end-if
e Dboolean isSessionlnvalidated(), to tell if the current session has been invalidated or not.

Code Example
if objHTTPHandler:>isSessionlnvalidated()
*>the session has been invalidated
else
*>the session is still valid

end-if

© Copyright 2014 Veryant. All rights reserved. Page 77 of 85

isCOBOL Enterprise Information System 2014 R1

e processHtmlFile (cgi-form), process an HTML file to replace %%constant%% with

specific value identified by value name.
Syntax rules
o cgi-formis alevel 01 data item for which the IS IDENTIFIED clause has been used
General rules
o itisuseful to convert legacy CGI COBOL program
o redirect (newPage), to issue a HTML page redirection.
Syntax rules
o newPage is an alphanumeric data item or literal

o redirect (newPage, HTTPparams), to issue a HTML page redirection passing

parameters.
Syntax rules
o hewPage is an alphanumeric data item or literal

o HTTPparams is a object of class HTTPData.Params

© Copyright 2014 Veryant. All rights reserved. Page 78 of 85

isCOBOL Enterprise Information System 2014 R1

HTTPClient class (com.iscobol.rts. HTTPClient)

The HTTPClient is an internal class that provides many useful features to communicate
with existing HTTP service like Web Service (REST/SOAP) HTTP server etc.

General rules
A reference to HTTPHandler should be defined in the program Linkage Section.

Code example.

configuration section.
repository.
class http-client as "com.iscobol.rts.HTTPClient"
linkage section.
77 http object reference http-client.

Features available in HTTPClient class:

o doGet (strURL), executes a HTTP request using GET method.
Syntax rules
o strURL should contains the URL to be invoke
General rules
o use setParameter() to set HTTP parameters to be passed

e doGet (strURL, HTTPData.Params params), executes a HTTP request using GET

method passing HTTP parameters.
Syntax rules
o strURL should contain the URL to be invoke

o params should contain a HTTPData.Params object where HTTP parameter are
defined

o doPost (strURL), executes a HTTP request using POST method.
Syntax rules
o strURL should contain the URL to be invoke
General rules

o use setParameter() to set HTTP parameters to be passed

© Copyright 2014 Veryant. All rights reserved.

Page 79 of 85

isCOBOL Enterprise Information System 2014 R1

o doPost (strURL, params), executes a HTTP request using POST method passing HTTP
parameters.

Syntax rules
o strURL should contain the URL to be invoked

o params should contain a HTTPData.Params object where HTTP parameters are
defined

e doPostEx (strURL, type, content), executes a HTTP request using POST method where
it is possible to specify MIME type and a data stream

Syntax rules
o strURL should contain the URL to be invoke
o typeshould contain MIME type. Currently just “text/xml” is supported

o content should contain data stream related to type. Currently just XML stream is
supported

e getResponseCode (rc), it returns the status code from an HTTP response message.
Syntax rules
o rcisanumeric item that contains the HTTP response code.
General rules

o should be called to check if a doPost() or doGet() was executed with success. The
response code value for success is 200.

o getResponseMessage (res), get the HTTP response message. if any, returned along

with the response code from a server.

Syntax rules

o resisanalphanumeric item that contains the HTTP response message.
General rules

o should be called to check if a doPost() or doGet() was executed with success. The
response message value for success is:

HTTP/1.0 200 OK

© Copyright 2014 Veryant. All rights reserved. Page 80 of 85

isCOBOL Enterprise Information System 2014 R1

o getResponsePlain (res), returns the HTTP server response
o resisaan alphanumeric item that contains the HTTP response content
General rules
o should called after a doPost() or doGet().

e getResponseXML (xml), it fill xm/ variable according to XML rules
o xml is alevel 01 data item for which the IS IDENTIFIED clause has been used
General rules
o should be called after a doPost() or doGet().

o getResponselJSON (json) fills json variable according to JSON rules
o json is alevel 01 data item for which the IS IDENTIFIED clause has been used
General rules
o should be called after a doPost() or doGet().

e setAuth (tok), specifies Bearer authentication
o tokis an alphanumeric data item that contains token authentication
General rules
o itshould be called before a doPost() or doGet().

e setAuth (user, password), it specifies user/password authentication

o useris analphanumeric data item that contains user name to be user for
authentication

o password is an alphanumeric data item that contains password to be user used for

authentication
General rules

o itshould be called before a doPost() or doGet().

© Copyright 2014 Veryant. All rights reserved. Page 81 of 85

isCOBOL Enterprise Information System 2014 R1

o setHeaderProperty (key, value), it allows to setting a an HTML header property like
cookies

o key, the name of header property to be set

o value, the value to be passed to the property
General rules

o should be called before a doPost() or doGet().

o getHeaderProperty (key, value), allows getting an HTML header property like
cookies

o key, the name of header property to be read
o value, the value inquired from property name
General rules
o should be called after a doPost() or doGet().
e setParameter (name, value), it allows setup of an HTML parameter.
o nhame, the name of parameter to be set
o value, the value of parameter name
General rules

o should be called before a doPost() to prepare parameters to be passed.

© Copyright 2014 Veryant. All rights reserved. Page 82 of 85

isCOBOL Enterprise Information System 2014 R1

HTTPData.Params class (com.iscobol.rts. HTTPData.Params)

The HTTPData.Params is an internal class that provides a simple way to define HTTP

parameters to be passed in a doGet/doPost methods.
General rules

A reference to HTTPData.Params should be defined in the program working storage

Section.

Code example:

configuration section.
repository.
class http-params as "com.iscobol.rts.HTTPData.Params"
working-storage section.
77 params object reference http-params.

To define parameters:
77 city-zipCode pic x(7) value “26456”.

set params = http-param:>new ()
:>add ("get Zip Code", city-zipCode) .

© Copyright 2014 Veryant. All rights reserved. Page 83 of 85

isCOBOL Enterprise Information System 2014 R1

Useful Definitions

User Agent/ Client

HTTP

Request

URL

REST

Web Server

Web Service or WS
Servlet Container

Response

Session

AJAX

© Copyright 2014 Veryant. All rights reserved.

The program that is used to request information from a server. This program is
frequently a web browser, but it could be any program on the user's machine.

Hypertext Transport Protocol, a standard encoding scheme used to transmit
requests to web servers and receive responses from web servers. HTTPS is a secure
version of HTTP.

An HTTP packet that contains a command issued by the user agent. A request may
simply GET a file from a web server, PUT a file to the web server, DELETE a file from
the web server, or may POST data (such as a form) to the server, or it may cause a
program to be run on the server. GET and POST are by far the most frequently used
commands.

Uniform Resource Locator, the location of a resource on the internet. A URL consists
of a scheme (in this context, HTTP or HTTPS), the name of a machine, and a path to
a file. For example, http://www.veryant.com/eis/index.html specifies the file

called index.html from directory ies on server machine veryant.com using the HTTP
scheme. When this is typed into a web browser, the browser issues a HTTP

GET request on this file.

REST (Representational State Transfer) is an architectural style for distributed
hypermedia systems and can be used to implement web services. While there is
not a formal standard like SOAP, it is based on the four principle HTTP request
types (GET, PUT, POST and DELETE), and URLs. In a REST architecture, a request
payload be in any format desired, including XML or JSON.

A program that runs on a server and listens for HTTP requests. When a request is
received, the web server processes the request or sends it on to another program
(such as J2EE Container like Tomcat) for processing.

A software system designed to support interoperable machine-to-machine
interaction over a network

A process that takes care of executing the Servlet COBOL code and turning them
into web page that the web server can deliver back to the client.

A HTTP packet that contains the response to the request. The response may be text,
to be displayed in a web browser, or data encapsulated for consumption by the
requesting program.

Requests are stateless, that is, the web server processes each request as if it had
never received a previous request from the same user agent. A session is a BIS
concept that allows sequential requests from the same user agent to be grouped
together and preserves state information across requests on the server.

Ajax (an acronym for Asynchronous JavaScript and XML) is a group of

Page 84 of 85

http://en.wikipedia.org/wiki/Interoperability
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/XML

isCOBOL Enterprise Information System 2014 R1

interrelated web development techniques used on the client-side to
create asynchronous web applications

JS JavaScript source code, or based on JavaScript source code

SOAP (from http://www.w3.0rg/TR/2007/REC-soap12-part1-20070427): a SOAP message
is specified as an XML infoset whose comment, element, attribute, namespace and
character information items are able to be serialized as XML 1.0. Note, requiring
that the specified information items in SOAP message infosets be serializable as
XML 1.0 does NOT require that they be serialized using XML 1.0. A SOAP message
Infoset consists of a document information item with exactly one member in its
[children] property, which MUST be the SOAP Envelope element information item
(see 5.1 SOAP Envelope). This element information item is also the value of the
[document element] property. The [notations] and [unparsed entities] properties
are both empty. The Infoset Recommendation [XML InfoSet] allows for content not
directly serializable using XML; for example, the character #x0 is not prohibited in
the Infoset, but is disallowed in XML. The XML Infoset of a SOAP Message MUST
correspond to an XML 1.0 serialization [XML 1.0].

WSDL (from http://www.w3.org/TR/wsdl): A WSDL document defines services as
collections of network endpoints, or ports. In WSDL, the abstract definition
of endpoints and messages is separated from their concrete network
deployment or data format bindings. This allows the reuse of abstract
definitions: messages, which are abstract descriptions of the data being
exchanged, and port types which are abstract collections of operations. The
concrete protocol and data format specifications for a particular port type
constitutes a reusable binding. A port is defined by associating a network
address with a reusable binding, and a collection of ports define a service.

© Copyright 2014 Veryant. All rights reserved. Page 85 of 85

http://en.wikipedia.org/wiki/Web_development
http://en.wikipedia.org/wiki/Client-side
http://en.wikipedia.org/wiki/Asynchronous_I/O
http://en.wikipedia.org/wiki/Web_application
http://www.w3.org/TR/2007/REC-soap12-part1-20070427
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/#soapenvelope
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/#XMLInfoSet
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/#XML
http://www.w3.org/TR/wsdl

