

© 2020 Veryant. All rights reserved.

isCOBOLTM Evolve
isCOBOL Evolve 2020 Release 1 Overview

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 2 of 33

Copyright © 2020 Veryant LLC.

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and recompilation. No part of this product or document may be reproduced in
any form by any means without the prior written authorization of Veryant and its licensors if any.

Veryant and isCOBOL are trademarks or registered trademarks of Veryant LLC in the U.S. and other
countries. All other marks are the property of their respective owners.

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 3 of 33

isCOBOL Evolve 2020 Release 1 Overview

Introduction

Veryant is pleased to announce the latest release of isCOBOL™ Evolve, isCOBOL Evolve

2020 R1.

isCOBOL Evolve provides a complete environment for the development, deployment,

maintenance, and modernization of COBOL applications.

isCOBOL Code Coverage and isCOBOL Unit Test are enterprise level features that enable

developers to write robust test suites and check their effectiveness, allowing the

production of a more stable code base in applications.

The 2020R1 release has many new features for GUIs, such as a new control: scroll-pane,

and the table-view style for tree-views. These are features that let developers modernize

applications.

The EIS suite has been upgraded, enhancing both WebClient and WebDirect with new

features.

Details on these enhancements and updates are included below.

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 4 of 33

isCOBOL Code Coverage and isCOBOL Unit Test features

Starting with the 2020R1 Release, isCOBOL is introducing features with enterprise users in

mind: isCOBOL Code Coverage and isCOBOL Unit Test. These features have been

available in other languages, such as Java, and now they’re available to isCOBOL

developers as well. They will help developers produce better quality tests for COBOL

applications.

 These features are now available in the isCOBOL Evolve suite, and can be accessed from

the command line or from the Eclipse-based isCOBOL IDE.

isCOBOL Code Coverage will measure the degree to which the source code of a program is

executed during test suite runs. A program with high code coverage, measured as a

percentage, has had more of its source code executed during testing, which suggests it

has a lower chance of containing undetected software bugs compared to a program with

low code coverage. This feature can also be used without a real test suite, and it can be

enabled via a runtime option.

When running the command:

iscrun –coverage IO_PERFORMANCE

isCOBOL Code Coverage creates a folder called “htmlReport” which contains an HTML

report of the code analysis. Figure 1, isCOBOL Code Coverage global report, shows the

report with a list of all programs executed and the percentage of total and individual

program code coverage.

The report shows both the percentage and number of missed statements and paragraphs

in each program.

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 5 of 33

Figure 1. isCOBOL Code Coverage global report

Clicking on the specific program name opens the report related to the single program,

highlighting all COBOL paragraphs with the specific percentage of code coverage, as

shown in Figure 2, isCOBOL Code Coverage program report.

Figure 2. isCOBOL Code Coverage program report

Clicking on the source file name shows the corresponding source code, with a green

background showing executed code, and a red background showing non-executed

statements. A yellow background shows executed conditional statements. All colors are

Eclipse’s standard for code coverage available for the Java language.

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 6 of 33

In Figure 3, isCOBOL Code Coverage source code, it’s easy to understand that the paragraph

START-FILE1-TEST was never executed because the IF condition was never satisfied. With

this information in mind, better tests can be developed to cover all of the code base.

Figure 3. isCOBOL Code Coverage source code

New configuration settings allow you to customize the report generated by isCOBOL

Code Coverage:

• iscobol.coverage.sessionname=name sets the name of the coverage session;

the default value is the name of the main program

• iscobol.coverage.sourcefiles=path sets the list of paths where the COBOL

source files are located. If not set, the current folder will be used.

• iscobol.coverage.classfiles=path sets the list of paths where the class files

are located, and are used by isCOBOL Code Coverage to build the report. If not

set, the report will be built using the loaded isCOBOL classes

• iscobol.coverage.html=path sets the directory in which isCOBOL Code

Coverage will create the report. If not set, the default value is "./htmlReport"

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 7 of 33

• iscobol.coverage.xml=path sets the file path of xml report. If not set, the xml

report is not generated. This is needed when using isCOBOL Code Coverage

inside the IDE to take advantage of its specific View.

• iscobol.coverage.analysis.excludes=path sets the list of isCOBOL classes

that will be excluded from the analysis. It can contain the wildcard '*', for

example A*

• iscobol.coverage.analysis.includes=path sets the list of isCOBOL classes

that will be included in the analysis. It can contain the wildcard '*', for example

B*

isCOBOL Unit Test lets developers create automated test suites, which are designed to test

that sections of code execute as intended. The more comprehensive the tests included in

a suite are, the more stable the resulting application will be. The goal of unit testing is to

isolate sections of a program and ensure that they are working correctly.

This feature is activated using a command line option, such as:

iscrun –iut –J-ea

The –ea Java option is needed to take advantage of the ASSERT statement used in the test

programs to show the reason of the failure in the isCOBOL Unit Test report. For example,

the following assert statement checks that the condition of a variable named string1 is

equal to “my string”. If the check fails, the string in the “otherwise” clause will be added in

the report:
assert string1 = "my string"

 otherwise "Test string manipulation: Error"

If the assert condition is true, the program continues to the next statement. If the entire

program is executed without any assert statements failing and no exceptions are raised, it

means that the test is successful.

The only mandatory configuration option to set is:

iscobol.unit_test.list_file=path

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 8 of 33

where path is a single file path or a list of paths that define the list of programs to be

executed.

For example, if the test suite needs to execute four programs called TEST1, TEST2, TEST3

and TEST4, the file declared in the iscobol.unit_test.list_file needs to contain:
TEST1
TEST2
TEST3
TEST4

Figure 4, isCOBOL Unit Test, shows the html report created after running the test suite. In

this example, the first 2 programs are executed correctly while TEST3 fails because the

above ASSERT statement is executed and the condition is evaluated to false. TEST4 fails

because a runtime exception has been raised.

The report will show a list of executed programs, the execution time, and if the tests

completed with success. If not, the failed assertions or runtime errors will be included.

Figure 4. isCOBOL Unit Test

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 9 of 33

The Unit Test reports con be customized using the following configuration properties:

• iscobol.unit_test.html=name sets the directory in which the Unit Test will

create the report. Its default value is "./htmlReport"

• iscobol.unit_test.xml=path sets the file path of xml report. If not set, the xml

report is not generated. This is necessary when using the Unit Test feature

inside IDE to take advantage of its specific View

It’s useful to run isCOBOL Unit Test in conjunction with isCOBOL Code Coverage, and both

can be activated from the command line:

iscrun –coverage –iut –J-ea

This can help identify which portions of code still don’t have tests associated with them, to

make sure the test suites are complete enough to cover all the application code.

In this scenario the isCOBOL Unit Test report contains a test-list-file link to isCOBOL Code

Coverage reports, as shown in Figure 5, isCOBOL Code Coverage report from isCOBOL Unit

Test.

Figure 5. isCOBOL Code Coverage report from isCOBOL Unit Test

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 10 of 33

isCOBOL IDE enhancements

In isCOBOL IDE 2020 R1 you can also execute the new Enterprise features in an integrated

system, activating dedicated Views to show and analyze the results of isCOBOL Code

Coverage and isCOBOL Unit Test.

To execute the isCOBOL Code Coverage feature, as shown in Figure 6, isCOBOL Code

Coverage in isCOBOL IDE, the toolbar button “Cobol Coverage As” can be used, and the

result of the analysis is shown in the Coverage view. The same menu item is available

under the main menu Run and in the source file’s context menu.

Figure 6. isCOBOL Code Coverage in isCOBOL IDE

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 11 of 33

isCOBOL Unit Test feature can also be accessed from the isCOBOL IDE via a specific run,

debug or coverage configuration option. When test execution is completed a specific

view will be shown, the isUnit view, as depicted in Figure 7. isCOBOL Unit Test in the IDE.

This view shows the list of executed programs, the total number of errors (exceptions) that

occurred, the number of failed ASSERT statements and a color bar showing if all tests

passed or one or more failed.

Clicking a program in the list displays details relative to that program.

The view is inspired by the standard Eclipse Unit Test view available for the Java language.

Figure 7. isCOBOL Unit Test in the IDE

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 12 of 33

The isCOBOL IDE’s Code Editor now supports customized code folding. This feature is

useful when working with a large source code file, and can help developers hide less

relevant pieces of code while concentrating on the important parts.

To enable this feature, the Enable folding option must be set in the Preferences / isCOBOL

/ Editor configuration section, which activates standard folding on sections and

paragraphs. To activate a custom folding, select the relevant lines, right-click the folding

bar and select the option “Add custom folding”. Custom folding sets can be added and

removed as needed.

Figure 8, IDE custom folding, shows standard folding and two custom folding sets, the first

one of which is opened and the second is closed.

Figure 8. IDE custom folding

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 13 of 33

GUI enhancements

Many improvements to GUI controls have been implemented in this release. A new

control, the SCROLL-PANE, is a container that can host other controls. It will display

scrollbars as needed to allow the user to pan the visible area.

Scroll-Pane

IsCOBOL compiler supports this new control and a new property, scroll-group, is available

on child components to select their host component.

An example of a scroll-pane is shown below:

 03 scroll-pane-1 scroll-pane
 line 8 column 2 size 68 lines 10
 transparent
 border-color rgb x#ACACAC
 .
 03 scroll-pane-page scroll-group scroll-pane-1.
 05 label
 line 2 col 2 size 8 cells title "Title:"
 .
 05 entry-field
 line 2 col 12 size 52 cells id 1
 .

As focus changes in the child components, the isCOBOL runtime will automatically pan

inside the scroll-pane to make sure the focused component is visible. Users can freely use

the scroll bars and pan in the content area.

Figure 9, Scroll-Pane control, shows a program running with a scroll-pane container.

Initially the upper left portion of the children is displayed. As the user tabs through the

controls, the scroll-pane automatically scrolls to show each focused component.

Figure 10, Scroll-Pane scrolled, shows the scroll-pane when the last child has focus.

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 14 of 33

Figure 9. Scroll-Pane control

Figure 10. Scroll-Pane scrolled

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 15 of 33

Table-View

The tree-view control now supports a new TABLE-VIEW style that activates support for

column definitions inside the tree-view. This new style is useful to provide a hierarchical

view with tabular data.

The following code snippet declares a tree-view with the table-view style:
					 01 Mask.
 03 tree-table-t tree-view table-view

 buttons lines-at-root
 line 2 col 2 lines 15 size 68 cells virtual-width 65
 display-columns (1, 30, 37, 60)
 data-columns (record-position of rec-multi
 record-position of rec-length
 record-position of rec-album
 record-position of rec-year)
 column-headings tiled-headings centered-headings
 heading-color 257 heading-menu-popup 3 end-color -16774581
 adjustable-columns reordering-columns
 event TV-EVT

 .

Several properties associated with column management of grid controls are supported in

the table-view style, such as display-columns, data-columns, column-headings, and more.

Figure 11, Tree-View with Table-View, shows the new style in action.

Figure 11. Tree-View with Table-View

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 16 of 33

Other GUI enhancements

The grid control has been enhanced by adding new properties to manage grids when

rows are hidden as a result of active filters, when filterable-column style is set, or because

the user is using the automatic search feature, activated by pressing the keyboard shortcut

Ctrl-F.

Now the visible rows can be inquired by using the property ROWS-FILTERED, as shown by

the following code:

										inquire my-grid rows-filtered in w-filtered

The list of returned rows is the same as with the ROWS-SELECTED property: row1 row2…

rowN. If no filter is set on the grid, and there are no hidden rows, inquiring ROWS-

FILTERED will return the special value -1.

The property ROWS-SELECTED has been enhanced to allow developers to set a special-

value “all” in the modify statement to select all rows, as shown in the code below:

modify my-grid rows-selected "all"

The new SEARCH-PANEL property has been implemented to force the grid to show the

search panel over the column headings. When set to 1, the search panel is always visible

even if the grid has the NO-SEARCH style, and the user will not be able to remove it. To

enable this behavior, the property can be set in the control’s definition, or use the code

below:
											

modify my-grid search-panel 1

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 17 of 33

The grid can now be configured to highlight the cell’s current row and column heading

with a specific color, helping the user identify the current cell content.

Three new properties can be used to configure the colors:

heading-cursor-background-color

heading-cursor-foreground-color

heading-cursor-color

For example, by having the following code set on the screen declaration level:

heading-cursor-background-color rgb x#FFDC61

the grid will look like popular spreadsheet programs at runtime, as shown in Figure 12,

Heading-cursor-color. The heading colors will highlight the current focused cell position.

Figure 12. Heading-cursor-color

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 18 of 33

The new NOTIFY-MOUSE style is now supported on all controls, and is used to fire the new

events MSG-MOUSE-ENTER, MSG-MOUSE-EXIT, MSG-MOUSE-CLICKED, MSG-MOUSE-

DBLCLICK.

This allows developers to have finer control on the user interface and the management of

mouse events, and provides more freedom in user interface design.

New GUI configurations properties available in the 2020R1 release:

• iscobol.gui.grid.find_delay to set the delay in milliseconds for the Grid

search feature

• iscobol.gui.messagebox.bcolor to set the default background color of

message boxes if not set explicitly on the display statement

• iscobol.gui.messagebox.fcolor to set the default foreground color of

message boxes if not set explicitly on the display statement

• iscobol.gui.messagebox.font to set the default font name and size of text in

the message boxes if not set explicitly on the display statement

• iscobol.gui.windows_modality to set the thread blocking behavior of

floating windows and message boxes. This is useful on multithread applications.

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 19 of 33

The Print Preview dialog will now show page thumbnails, enabled by default, allowing the

user to quickly jump to a specific page in a multi-page report. To dynamically control the

thumbnails panel, new methods have been implemented in the

com.iscobol.rts.print.SpoolPrinter class.

void setShowThumbnailsButton(boolean showThumbnailsButton)

boolean isShowThumbnailsButton()

The new print preview with thumbnails is shown in Figure 13, Print preview Thumbnails.

Figure 13. Print preview Thumbnails

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 20 of 33

Database improvements

Performance of data access from Database Bridge to RDBMs tables and c-treeRTG indexed

files when logging is enabled has been greatly improved. New configuration properties

have been implemented in the isCOBOL runtime to better manage the “InPool” feature of

c-treeRTG, which avoids the performance costs of opening an indexed file for the

connected client.

Performance of Database Bridge

Performance of Database Bridge for MySQL has been improved with a new option during

the EDBI generation to take advantage of MySQL hints, a feature that allows developers to

control the SQL optimizer. This can be set on the edbiis wrapper level with the new –mh

option or with the new compiler directive

iscobol.compiler.easydb.mysql.hints=true

A table of performance gains is shown in Figure 14, Database Bridge for MySQL, comparing

isCOBOL 2019R2 to isCOBOL 2020R1 without and with the new –mh option.

The test was run in Windows 10 64-bit on an Intel Core i5 Processor 4440+ clocked at 3.10

GHz with 8 GB of RAM, using Oracle JDK 1.8.0_231 and MySQL 5.6. All times are in seconds.

The COBOL program executes the START on different keys, then executes READ NEXT for

all the records in a table containing 200,000 records.

The EDBI routine uses light cursors (-dmld wrapper option or compiler configuration

iscobol.compiler.easydb.light_cursors=2), causing a new cursor to be opened every

100 records. The use of hints saves the time spent by the MySQL query optimizer to

choose which index to use to scan the table.

Figure 14. Database Bridge for MySQL

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 21 of 33

A new Database Bridge configuration option has been added to generate a smarter START

statement that executes less query instructions:

iscobol.easydb.limit_dropdown=n

where n can be:

0=off, the default behavior

1=partial, to activate the optimization on START with the WITH SIZE clause

2=full, to activate the optimization on START without WITH SIZE clause

3=all, to activate the optimization on any START statement

As shown in Figure 15, Database Bridge with configuration limit_drop_down, a performance

comparison is made between isCOBOL 2019R2 and isCOBOL 2020R1 without and with the

new configuration. The test was run in Windows 10 64-bit on an Intel Core i5 Processor

3210M 2.50 GHz with 16 GB of RAM, using Oracle JDK 1.8.0_231 and Oracle 11 Database

server. All times are in seconds. The COBOL program executes the START statement

followed by a loop of READ NEXT to read the records that satisfy the conditions set on

segments of the key. The table contains 100,000 records.

Figure 15. Database Bridge with configuration limit_drop_down

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 22 of 33

Performance of c-treeRTG indexed files

A new c-tree server configuration variable, DELAYED_DURABILITY, has been implemented

in the embedded isCOBOL 2020R1 c-treeRTG version to increase performance of c-treeRTG

indexed files when the logging feature is active.

Enabling logging is beneficial for a number of reasons:

• Safety: in case of file corruption caused by events such as hardware failure or

unexpected power loss, when the c-treeRTG server is restarted with logging

enabled, files are rebuilt automatically, ensuring data integrity, and is user-

transparent.

• Replication: c-treeRTG replication requires logging to be enabled, since the

replication engine relies on logging information to properly update all the servers

involved. Replication can be one-directional, where data saved on a master server

is replicated to a backup server, or multi-directional, where two or more servers

continuously update each other in real-time. Replication has a great benefit:

failover, since if a server goes offline, any other server in the replication cluster can

fulfill requests for the missing server.

Since logging could slightly impact performance and increase disk usage, it is possible to

enable it on only specific, highly modified files, while other less important files such as

lookup tables can be used without logging to maximize performance.

The following command can be used to activate logging on a specific file:

ctutil -tron filename

All COBOL statements that update records (such as WRITE, REWRITE, DELETE) have been

improved, as shown in Figure 16, c-treeRTG logging and InPool, a performance comparison

between isCOBOL 2019R2 and isCOBOL 2020R1 without and with the new configuration

variable. The test was run in Windows 10 64-bit on an Intel Core i5 Processor 3210M 2.50

GHz with 16 GB of RAM, using Oracle JDK 1.8.0_231. All times are in seconds. The indexed

file contains 300,000 records.

The OPEN-READ-CLOSE test showcases the performance gains that can be obtained using

the InPool feature of c-treeRTG. The test program performs a loop consisting of a single

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 23 of 33

READ inside OPEN and CLOSE statements. The configuration options that handle pooling

allow developers to flexibly configure which files can use the InPool feature. These are:

iscobol.file.index.filepool=true

iscobol.file.index.inpool=true

iscobol.file.index.filepool.size=n

iscobol.file.index.#.inpool=true

Figure 16. c-treeRTG logging and InPool

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 24 of 33

isCOBOL Compiler

Starting from isCOBOL 2020R1, the compiler supports the new POSITIONAL clause in the

MOVE statement to easily move dynamic variables (X ANY LENGTH, OCCURS DYNAMIC,…)

used inside structures into other structures without dynamic variables and vice versa.

This proves useful, for example, when moving data from FD declaration, which has static

content, to WORKING-STORAGE items, which can contain dynamic variables, to minimize

memory usage.

Intrinsic functions execution has been enhanced, and a new EFD directive has been added

for temporary tables.

Move Positional

The new POSITIONAL clause is similar to the existing CORRESPONDING clause, but instead

of relying on variable names to identify matching items, it will use the positional order of

items to match and move data between structures. The first item in the source structure

will be moved to the first item in the target structure, the second to the second, and so on.

For example, the following code snippet defines 2 structures that are comparable in the

field positioning but one structure contains only fixed data items, while the other contains

dynamic data items:

WORKING-STORAGE SECTION.

 01 struct-fix.
 03 g1-name pic x(50).
 03 g1-table occurs 100.
 05 g1-account-id pic 9(3) value 0.
 05 g1-account-short-des pic x(20) value space.
 05 g1-account-notes pic x(1000) value space.
 03 g1-address pic x(50).
 01 struct-dyn.
 03 g2-name pic x any length.
 03 g2-table occurs dynamic
 capacity cap-g2-table-occ
 initialized.
 05 g2-account-id pic 9(3) value 0.
 05 g2-account-short-des pic x(20) value space.
 05 g2-account-short-des pic x any length value space.
 03 g2-address pic x any length.

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 25 of 33

The new POSITIONAL clause can be used as shown in the statement:
 move positional struct-fix to struct-dyn

and the compiler will translate that one statement in the following moves:
 move g1-name to g2-name
 perform varying ind from 1 by 1 until ind > 100
 move g1-account-id(ind) to g2-account-id(ind)
 move g1-account-short-des(ind) to g2-account-short-des(ind)
 move g1-account-notes(ind) to g2-account-notes(ind)
 end-perform
 move g2-address to g2-address

This will make maintenance of COBOL code with large data structures much simpler.

Moreover, the DELIMITED BY DEFAULT VALUE clause can be used as in the following

statement:
 move positional struct-fix to struct-dyn delimited by default value

and the compiler will translate it as:
 move g1-name to g2-name
 perform varying ind from 1 by 1 until ind > 100
 if g1-account-id(ind) = 0 and
 g1-account-short-des(ind) = spaces and
 g1-account-short-des(ind) = spaces
 exit perform
 else
 move g1-account-id(ind) to g2-account-id(ind)
 move g1-account-short-des(ind) to g2-account-short-des(ind)
 move g1-account-notes(ind) to g2-account-notes(ind)
 end-if
 end-perform
 move g1-address to g2-address

This way, dynamic occurs variables will be filled until default values are found, reducing

memory usage to what is actually being used.

The POSITIONAL clause can also be used when moving two fixed structures with different

children and different pictures, since it relies on positional ordering to execute the moves.

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 26 of 33

Intrinsic functions

The compiler now supports a shorthand syntax to invoke functions using the $ symbol in

place of the “function” keyword. This simplifies the way to execute intrinsic functions and

could also be useful for compatibility with other COBOLs.

For example, the syntax:
 display $length(g2-address)
 display $capacity(g2-table)

is the equivalent of:
 display function length(g2-address)
 display function capacity(g2-table)

The two functions length and capacity will be executed during the DISPLAY statement.

Intrinsic functions can be used in any COBOL statement that requires a data item, such as

MOVE, STRING, or any conditional statement, such as IF, EVALUATE, PERFORM UNITL.

EFD TEMPORARY directive

The compiler now supports a new EFD directive to mark a table as TEMPORARY instead of

PERMANENT. This directive is used by the Database Bridge product. Temporary tables are

useful as “working files”. They are usually needed to save temporary data that is not being

used concurrently and does not need to be stored permanently. Usually these temporary

tables are kept in memory to provide maximum performance.

The following code snippet shows how to define the table “mywork” as temporary:
 $efd temporary
 fd mywork.
 01 mywork-rec.
 03 mywork-k pic 9.
 ...

The compiler will natively support temporary tables for any RDBMS that supports them.

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 27 of 33

Oracle 18c supports two kinds of temporary tables: global and private, and those can be

specified using the global and private values in the temporary directive. Unlike

traditional database servers, global temporary tables in Oracle are permanent database

objects that store data on disk and objects are visible to all sessions, but data written in the

tables is only visible to the session that created it. At the end of the session the data is

removed, but the table remains. Private temporary tables, on the other hand, are memory-

based tables, only visible to the session that created it, and are automatically dropped at

the end of the session or transaction.

Example of the $efd temporary directive for Oracle 18c:
 $efd temporary = global

or
 $efd temporary = private

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 28 of 33

isCOBOL Debugger

Starting from isCOBOL 2020R1 the isCOBOL Debugger, used to debug ThinClient

applications, makes it easier for multiple developers to debug applications running on the

same Application Server. To allow this, the Application Server now spawns a separate

process for each ThinClient application launched with the -d option, allowing isolation of

processes so that debugging an application will not have influence on other applications

that may be running in the same Application Server.

This allows debugging of applications on production servers without using a separate

Application Server running on a different port number.

By default, port numbers from 9999 to 10099 are used, allowing a maximum of 100

concurrent debugging sessions. The range of ports can be configured using the new

configuration variable iscobol.as.debugport_range. For example, setting the property

using:

iscobol.as.debugport_range=20010-20013,20050

the Application Server will allocate ports 20010, 20011, 20012, 20013, 20050 for

debugging sessions.

Using the new configuration property is transparent to the client, and there is no need to

specify a port to connect to for debugging, as the server will handle it automatically. The

same command line can be used to start multiple debugging sessions from multiple users,

such as:

isclient –hostname ip-server –port 10999 –d PROGNAME

For compatibility, the previous command syntax forcing a specific debug port is still

supported:

isclient –hostname ip-server –port 10999 –debugport 20012 –d PROGNAME

Using the isCOBOL 2020R1 release, we suggest removing the debugport option from the

command line, and letting the server choose the first available debug port.

If bypassing the new Application Server behavior is needed, the following configuration

variable can be set to fall back to the previous multithreaded mode:

iscobol.as.multitasking=0

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 29 of 33

isCOBOL EIS

isCOBOL EIS, Veryant’s solution to write web-enabled COBOL programs, is constantly

updated to provide more comprehensive web solutions. In isCOBOL 2020R1, there are

many updates to WebDirect and WebClient. Also, the HTTPClient class can now consume

existing web services with PUT and DELETE requests.

WebDirect enhancements

WebDirect, Veryant’s technology that allows programs with screen sections to run in a

web browser by converting them to HTML/CSS/Javascript equivalents, has been updated

with several enhancements.

The grid control now allows keyboard navigation as its desktop counterpart, and supports

inquiring the ROW-CAPACITY property.

A new configuration property has been added to allow numeric input field to display a

numeric keypad on mobile devices:

 iscobol.wd2.mobile_numpad=1

All layout-managers are now fully supported in WebDirect, including the “lm-responsive"

layout manager. This allows developers to target multiple devices with different screen

sizes and resolutions using WebDirect without having to use HTML/CSS implementation

or WebClient, and to have the application respond properly when the user resizes the

application or browser windows.

Figure 17, WebDirect on Desktop, shows the user interface of a program running on a

desktop system, where each entry field is displayed next to it, since screen real estate

allows it.

Figure 18 WebDirect on smartphone, shows the same application running on a smartphone

screen, where labels are displayed above the entry fields to optimize the limited width of

the screen.

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 30 of 33

Figure 17. WebDirect on Desktop

Figure 18. WebDirect on smartphone

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 31 of 33

WebClient enhancements

WebClient is Veryant’s solution for running desktop applications on a remote server and

interacting with it through a web browser. To interact with the application on devices that

do not have a physical keyboard, WebClient provides a “Keyboard” soft button that

displays the device’s virtual keyboard when pressed. The keyboard now can also be

activated by double tapping on the screen. A new application configuration field has

been added, "Minimum display width in pixel for keyboard button". This allows the

developer to set a minimum display resolution for the keyboard button. When the display

size is less than this setting the Keyboard button is hidden, leaving all the screen real

estate available to the application, and minimizing the chance of the “Keyboard” button

covering the user interface elements.

Additionally, IME keyboards are now fully supported, extending support for languages

such as Chinese, Japanese and Korean.

HTTPClient

HTTPClient is a class that allows COBOL programs to interact with Web Services. It has

been updated to manage PUT and DELETE requests, in addition to the already

implemented GET and POST requests.

The new method signatures are shown below:

public void doPut(strUrl)

public void doPut(strUrl, params)

public void doPutEx(strUrl, content)

public void doPutEx(strUrl, type, content)

public void doPutEx(strUrl, type, content, hasDummyRoot)

public void doDelete(strUrl)

public void doDelete(strUrl, params)

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 32 of 33

Additional improvements

Since devices are becoming more and more diverse, the isCOBOL Documentation has

been redesigned with a new modern look and feel and is now fully responsive, allowing it

to be accessible to developers from mobile devices.

Figure 19, New documentation, shows the new look of the documentation.

Figure 19. New documentation

GIFE, the Graphical Indexed and relative File Editor, now manages recently opened files,

making it simpler to reopen with recently used settings, such as Open Mode and Efd file.

Figure 20, GIFE recent files, shows the new recent opened file menu items, allowing the

developer to select a file with a single click. The recently used file is saved in the

$user/gife.properties file when the user exits the GIFE utility.

isCOBOL Evolve 2020 R1 Overview

© Copyright 2020 Veryant. All rights reserved. Page 33 of 33

Figure 20. GIFE recent files

The GIFE’s File info dialog displays the file record size, collation and key definitions as

shown in Figure 21, GIFE File Info.

Figure 21. GIFE File Info

