

© 2020 Veryant. All rights reserved.

isCOBOLTM Evolve
isCOBOL Evolve 2020 Release 2 Overview

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 2 of 33

Copyright © 2020 Veryant LLC.

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and recompilation. No part of this product or document may be reproduced in
any form by any means without the prior written authorization of Veryant and its licensors if any.

Veryant and isCOBOL are trademarks or registered trademarks of Veryant LLC in the U.S. and other
countries. All other marks are the property of their respective owners.

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 3 of 33

isCOBOL Evolve 2020 Release 2 Overview

Introduction

Veryant is pleased to announce the latest release of isCOBOL™ Evolve, isCOBOL Evolve

2020 R2.

isCOBOL Evolve provides a complete environment for the development, deployment,

maintenance, and modernization of COBOL applications.

A new isCOBOL Profiler makes it easier to identify application bottlenecks.

The 2020 R2 release has new GUI controls such as the new “hamburger menu” and glyph

fonts rendering, and improves many existing ones, such as grids and message boxes, to

further help developers modernize their applications.

The Debugger has been reengineered, and now source code can be embedded in the

compiled class, making debugging sessions possible without having the source. The new

debugger also adds a new Console View that separates messages coming from sysout and

syserr from other debugger output.

Details on these enhancements and updates are included below.

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 4 of 33

New isCOBOL Profiler

Starting with the 2020R2 Release, a new Profiler has been implemented to allow

performance analysis on applications, making it easy to identify which program or

paragraphs take longer to execute. Developers can view the gathered information in a

clean HTML output, and take actions to perform code optimizations accordingly to

maximize gains.

This feature is now available in the isCOBOL Evolve suite, and can be accessed from the

command line or from the Eclipse-based isCOBOL IDE.

The Profiler can be enabled in different ways depending on deployment architecture. It

can be activated using a runtime option, as shown in the command line below:

iscrun –profile IO_PERFORMANCE

With this command, the isCOBOL Profiler creates a folder called “hprofHtmlReport”

containing an HTML report of the profile analysis. Figure 1, isCOBOL Profile report, shows

the report with a list of all executed programs and the percentage of the total run time, as

well as individual paragraph profile results.

The report shows both the percentage of total time and the number of seconds spent in

each programs’ paragraphs. It also shows how many times a paragraph has been executed

in the “Count” column.

Another way to start the profiling process, compatible with the previous profiler feature, is

using a java option:

-javaagent:/Veryant/isCOBOL2020R2/lib/isprofiler.jar

This method of activating the profiler is most useful when running in an Application Server

architecture, or in scenarios such as Java programs calling isCOBOL or running isCOBOL EIS

applications in a J2EE container like Apache Tomcat, when the main class is not the COBOL

program.

In isCOBOL 2020 R2, the Profiler can also be activated or stopped dynamically at runtime,

by performing a CALL “C$PROFILE” instruction. An example of this usage will be shown in

a later section of this document.

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 5 of 33

Figure 1. isCOBOL Profile report

When clicking on the “View Program table” link shown in the figure above, the profiler

report is opened, showing the profiling details of each program without the paragraph

details, as shown in Figure 2, isCOBOL Profile program table.

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 6 of 33

Figure 2. isCOBOL Profile program table

Clicking on a source file name, for example IO_INDEXED, the Paragraph table view is

loaded, with the filter automatically set to the selected program, thus showing all its

paragraphs performance details.

In Figure 3, isCOBOL Profile filter, shows how to filter the output by program name.

Figure 3. isCOBOL Profile filter

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 7 of 33

The report can be filtered by typing in the Search field, to select specific programs or

paragraphs. The filter is applied to all columns in the table. The report shows a warning if

programs are profiled when compiled in debug mode, or if logging is enabled, as that will

impact performance. Should this occur, developers should recompile the programs

without the debug option, and run with the iscobol.tracelevel configuration option

disabled in order to profile with maximum performance.

Profiler reports can be customized using new configuration options:

• iscobol.profiler.html=path sets the folder in which isCOBOL Profiler will create the

report. If not set, the default value is "./hprofHtmlReport"

• iscobol.profiler.xml=path sets the file path of xml report. If not set, the xml report

is not generated. This is needed when running the isCOBOL Profiler inside the IDE to take

advantage of its specific View.

• iscobol.profiler.excludes=path sets the list of isCOBOL classes that will be

excluded from the profiling analysis. It is a comma-separated list of regular expressions

defining the programs, for example IO_INDEXED,IO_RELATIV[A-Z_]

• iscobol.profiler.includes=path sets the list of isCOBOL classes that will be

included in the profiling analysis. It uses the same syntax explained above.

The new library routine C$PROFILE is handy when trying to profile a program that contains

ACCEPT statements, since performance analysis is affected by the time the user takes to

complete the ACCEPT statement. Developers can easily suspend the profiling process

when such events occur, and resume it when it’s done. The routine also allows you to

dynamically set the report format and the folder in which to create the report.

The code snippet below shows how to perform all the steps explained above from code:

 call "C$PROFILER" USING cprof-disable
 accept mask-parameters
 call "C$PROFILER" using cprof-set "html" "html-profiler-output"
 call "C$PROFILER" USING cprof-enable
 perform elaboration.
 call "C$PROFILER" USING cprof-disable
 display message "processing completed"
 call "C$PROFILER" USING cprof-flush

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 8 of 33

The Code Coverage options have analogous settings to control its behavior at runtime

using the C$COVERAGE library routine with new op-codes, as shown in the snippet below:

 call "C$COVERAGE" using ccov-set "html" "html-coverage-output"
 ...
 call "C$COVERAGE" USING ccov-flush

The Code Coverage feature, which was previously available when running stand-alone

programs using iscrun, is now fully supported in other environments, such as the

Application Server, using the new property options for –javaagent, as shown below:

-javaagent:/Veryant/isCOBOL2020R2/lib/isprofiler.jar=coverage;html=html-
coverage;profiler;html=html-profiler

When run with this option, the Application Server, upon termination, will create the Code

Coverage and the Profiler reports in two different folders, unless the C$PROFILER or

C$COVERAGE routines are called by running programs to flush the reports.

The –javaagent option enables the customization of additional parameters of both Code

Coverage and Profiler features:

• includes= comma separated list of regular expressions to specify the classes to be

included in the report

• excludes= comma separated list of regular expressions to specify the classes to be

excluded from the report

• xml= name of the xml output file

Additional options are available for the Coverage feature:

• sourcefiles= the location of the source files

• classfiles= the location of the class files

• append= the xml file to be appended to the output. This can be specified multiple

times

• sessionname= the name of the coverage session

All these features enhance Veryant products and complete the isCOBOL Code Coverage

and isCOBOL Unit Test features introduced in the 2020 R1 release, and are especially

appealing to enterprise users.

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 9 of 33

isCOBOL IDE enhancements

The Profiler feature can now be executed from the isCOBOL 2020 R2 IDE, and a specific

View is provided to show and analyze the results of the profiling process.

Figure 6, isCOBOL Profiler in isCOBOL IDE shows how to enable profiling on specific

programs. By default, all programs are included in Profiler, and the results gathered by the

analysis are available in the Profiler View, as shown in Figure 7, isCOBOL Profiler View.

Figure 6. isCOBOL Profiler in isCOBOL IDE

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 10 of 33

Figure 7. isCOBOL Profiler View

Double clicking an item in the Profiler View opens the selected program in the Editor, with

the cursor located at the specific paragraph, helping developers speed up the process of

identifying bottlenecks to optimize the code for better performance.

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 11 of 33

The isCOBOL IDE’s Screen Painter now supports manual editing in Working Storage,

Linkage Section and FD sections, to complement the Graphical editor previously available.

Changes made manually are available in the Screen Painter immediately. This feature will

be appreciated by COBOL developers who would prefer to code by hand instead of

through the Graphical editor.

Figure 8, isCOBOL IDE Cobol Editor, shows the Cobol Editor section of the Working Storage

painter, where a group level variable is manually coded. The Painter will append the

manual code fragment in the generated source code after the variables defined in the

Graphical editor.

Figure 8. isCOBOL IDE Cobol Editor

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 12 of 33

GUI enhancements

GUI controls have been improved in the 2020 R2 release. A new menu style is now

available, the Hamburger menu, that arranges its items in a tree-view style.

The W$BITMAP library routine can now render glyph font characters as images that can be

used as icons in any control that can handle bitmaps.

Hamburger menu

The isCOBOL compiler now supports a new menu style that arranges items in a

hierarchical tree-view which appears after pressing an “hamburger” icon, and can replace

the classic menu bar. This new feature can be used to give applications a more modern

look, or to replace a standard menu bar in a responsive application to adapt to a resized

surface area.

A new op-code, wmenu-new-hamburger, has been added to the W$MENU library routine to

enable the creation of hamburger menus.

A code snippet to create a hamburger menu is shown below:

 call "W$MENU" using wmenu-set-attribute
 "default-font" h-menu-font
 call "W$MENU" using wmenu-set-attribute
 "width" 160
 call "W$MENU" using wmenu-new-hamburger giving menu-handle

The new wmenu-set-attribute op-code allows full customization of the graphical

appearance of the menu, such as fonts, colors and icons. The full list of supported

attributes is: check-icon, default-background-color, default-font, default-
text-color, disabled-background-color, disabled-font, disabled-text-color,
dropdown-icon, dropdown-open-icon, hamburger-icon, hamburger-open-icon,
hover-background-color, hover-font, hover-text-color, position, tool-bar-

covering, style, width.

Existing W$MENU op-codes can be used to manage the hamburger menu the same way as

regular menus.

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 13 of 33

A new attribute called "menu-bar-flavor" has been implemented to easily change the

default menu style of the application. Executing the code

 call "W$MENU" using wmenu-set-attribute "menu-bar-flavor" "hamburger"

sets the hamburger menu as default menu type, and the entire application will use

hamburger menus instead of the classic menu-bar.

Figure 9, Hamburger menu, shows a program running with a hamburger menu opened

after pressing the hamburger button.

Figure 9. Hamburger menu

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 14 of 33

Glyph fonts

Glyph fonts are vector fonts that contain icons instead of characters, and have been widely

used in web applications. Being vector-based make them especially suitable to scale

without visual quality loss when used on high-DPI displays.

In the isCOBOL 2020 R2 release they are available for COBOL programs, using the new

"wbitmap-load-from-font" op-code of the W$BITMAP library routine. Using this op-

code, text and symbols can be converted to bitmaps, and can then be used on any control

that supports bitmap-handle and bitmap-number properties, such as push-button, entry-

field, grid, tree-view.

The following code snippet loads a font using the W$FONT routine, then it loads the glyph

symbols of 3 characters identified by their Unicode numbers. Using the new op-code, the

W$BITMAP routine can be called passing the font handle, the list of characters, the font-

size and color to be used. The routine will generate a bitmap strip that can be used in

controls that can handle bitmaps strips,

 working-storage section.
 77 h-font handle of font.
 77 h-font-icon pic s9(9) comp-4.
 77 icon-size pic 9(2).
 77 icon-color pic s9(9).
 77 icon-characters pic n any length.					
 ...
 screen section.
 01 Mask.
 ...
 03 ef-font entry-field
 bitmap-handle h-font-icon bitmap-width 16
 bitmap-number 1 bitmap-trailing-number 2
 ...
 03 pb-font push-button title "Change font"
 bitmap-handle h-font-icon bitmap-width 16
 title-position 2 bitmap-number 3
 ...
 procedure division.
 ...
 move "Font Awesome 5 Free Solid" to font-name
 call "w$createfont" using "Font Awesome 5 Free-Solid-900.otf" font-name
 initialize wfont-data
 set wfdevice-console to true
 move font-name to wfont-name
 move 10 to wfont-size

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 15 of 33

 CALL "W$FONT" using wfont-get-font h-font wfont-data
 move nx"f002f891f031" to icon-characters
 call "w$bitmap" using wbitmap-load-symbol-font h-font
 icon-characters icon-size icon-color
 giving h-font-icon
 display Mask
 ...

The final result is shown in Figure 10, Controls with glyph symbols, where the zoom icon is

bitmap-number 1, and is loaded from the “Awesome 5 Free-Solid-900.otf” font, and has

Unicode character nx”F002“.

Figure 10. Controls with glyph symbols

This new feature makes it easy to enhance isCOBOL GUI applications to use glyph fonts as

icons instead of loading bitmap images from disk.

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 16 of 33

Other GUI enhancements

The Grid control has been enhanced by adding a new filter-types property to better

manage filter types for each column.

It’s now possible to specify at a column level if the filter feature is available and the type of

filter, as shown in the following code:

 filter-types (0, 2, 0, 2, 1, 2, 2, 1)

A value of 0 will disable filtering for the column, 1 will remove the filter after a click on the

red funnel icon, and a value of 2 will reopen the previously defined filter when clicking the

yellow funnel icon.

The search panel has been enhanced by adding the ability to search with case insensitive

rules. All buttons in the panel have now an icon.

The search panel can now be opened programmatically using the new action-search

value, as shown in the code below:

modify my-grid action action-search

The sort feature activated with sortable-columns or sort-types properties now have new

icons. All grid icons can be customized by adding a JAR file that contains the image files to

the CLASSPATH.

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 17 of 33

All these new grid features are shown in Figure 11, Grid filter, sort and search features.

Figure 11. Grid filter, sort and search features

The tree-view control now supports selecting multiple elements of the same level. This can

be activated with the selection-mode property as shown in the code snippet:

 selection-mode tvsm-multiple-interval-selection

With this feature enabled, multiple items can be selected using the usual Control and Alt

key combinations.

Selected items can be inquired by the program using the items-selected property that

returns the list of item handles:

 inquire tv1 items-selected tv-items-sel

Figure 12, Tree-View selection-mode, shows the new tree-view feature in action.

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 18 of 33

Figure 12. Tree-View selection-mode

Figure 12 also shows the new message box, which has been revamped to provide a more

modern look and feel. Additionally, the message box can now be centered in the monitor

instead of the parent window using the CENTERED keyword, as shown in the following

code snippet.

 display message "Are you sure to continue?"
 title "Confirmation"
 type mb-yes-no
 icon mb-warning-icon
 default mb-no
 timeout 800
 centered
 giving mb-return

A new configuration property can be used to automatically apply the new CENTERED

option at the application level:

iscobol.gui.messagebox.centered=true

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 19 of 33

It is also possible to provide a custom message box implementation using a new

configuration property:

iscobol.gui.messagebox.custom_prog=PROGRAM_NAME

PROGRAM_NAME is a compiled COBOL program that is automatically called by the

isCOBOL framework every time a display message statement is executed. The program

receives the details of the message box as linkage section parameters as defined below,

and can provide a customized implementation:

 linkage section.
 77 msgbox-text pic x any length.
 77 msgbox-title pic x any length.
 77 msgbox-type pic 9.
 77 msgbox-icon pic 9.
 77 msgbox-default pic 9.
 77 msgbox-timeout pic 9(5).
 77 msgbox-centered pic 9.
 procedure division using msgbox-text
 msgbox-title
 msgbox-type
 msgbox-icon
 msgbox-btn-default
 msgbox-timeout
 msgbox-centered
 .

The web-browser control can now be used with the JxBrowser Java component,

a powerful Chromium-based integrated browser for Java applications that processes and

displays HTML5, CSS3, JavaScript, Flash etc. Customers that used JxBrowser in Java

applications can now use it in isCOBOL applications by setting the following configuration:

iscobol.gui.webbrowser.class=com.iscobol.browser.jx.JXWebBrowser?lic
enseKey=...

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 20 of 33

isCOBOL Compiler

The isCOBOL 2020R2 compiler is faster in massive compilations, a new EasyLinkage feature

has been implemented to easily convert C calls into pure Java libraries and additional

syntax is supported to increase compatibility with other COBOL dialects.

Performance on massive compilations

The compiler has been reworked by removing the need for the tools.jar file to be in

CLASSPATH, and the compilation of .java files to .class objects is now faster, especially

when performing large command line compilations, such as when using the command:

iscc –options... source/*.cbl

Figure 13, Comparison of compiler performance, shows a performance comparison between

isCOBOL 2019R1, 2019R2, 2020R1 and the current 2020R2. The tests were run using

Windows 10 Pro 64-bit on an Intel Core i-7 Processor-8550U, 1.80 GHz with 16 GB of RAM,

using Oracle JDK 1.8.0_251. All times are in seconds. The test was compiling a real

application module consisting of 550 programs with more than 10,000 copy files, for a

total of over 1 million lines of COBOL code. Different compiler options have been used

depending on the type of compilation.

Figure 13. Comparison of compiler performance

isCOBOL is constantly being improved for performance and customers using older

versions now have another good reason to upgrade their release to take advantage of

faster compiling times.

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 21 of 33

EasyLinkage for Java migration

When migrating COBOL code that relies on C code where COBOL code makes native

function calls using the CALL statement, it is usually advised that you migrate the C code

to Java to have more readable code and avoid depending on C. To help in the process, the

new isCOBOL 2020 R2 compiler introduces a new feature that generates Java stub sources

to handle COBOL parameters received in CALL statements.

Assume, for example, the following COBOL code, which uses a C library with 3 different

functions that are being ported to isCOBOL and the C library is being migrated to Java:
 WORKING-STORAGE SECTION.
 77 w-path pic x(256).
 77 path-len pic 9(3).
 01 w-exec.
 03 w-command pic x(128).
 03 w-options pic x(64).
 03 w-param pic 9(2) comp.
 ...
 PROCEDURE DIVISION.
 MAIN.
 ...
 call "MyLibrary"
 call "func_initialize"
 call "func_get_path" using by value path-len
 by reference w-path
 call "func_exec" using w-exec
 ...

The source code can be compiled using the new configuration setting:

iscobol.compiler.easylinkage=2

to automatically generate the stub sources called: MYLIBRARY.java, FUNC_INITIALIZE.java,

FUNC_GET_PATH.java and FUNC_EXEC.java. The main problem when integrating COBOL

code with another language is understanding how to code the proper memory structures

to receive the COBOL parameters: how are group variables handled? How is a comp

variable stored?

When compiling with the above property set, the isCOBOL compiler takes care of this

complexity by generating the correct parameter definitions in the Java source code.

Developers only need to focus on porting the C logic to Java. The EasyLinkage feature

even handles C functions with variable numbers of arguments and different sizes.

For example, in the FUNC_EXEC.java source the COBOL group level w-exec has been

declared as:

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 22 of 33

 // variable declaration W-EXEC
 public byte wExec$0[];
 public com.iscobol.types.PicX wExec;
 public com.iscobol.types.PicX wCommand;
 public com.iscobol.types.PicX wOptions;
 public com.iscobol.types.NumericVar wParam;
 ...
 {
 wExec$0=Factory.getMem(194);
 wExec=Factory.getVarAlphanum(wExec$0,0,194,...,"W-EXEC",...);
 wCommand=Factory.getVarAlphanum(wExec,0,128,...,"W-COMMAND",);
 wOptions=Factory.getVarAlphanum(wExec,128,64,...,"W-OPTIONS",...);
 wParam=Factory.getVarBinary(wExec,192,2,...,"W-PARAM",...);
 }
 ...
 /* Write the routine logic here
 ...

Additionally, the compiler generates by default the source files in specific subfolders

called:

easydb for database bridge generation (any kind of database option)

easylinkage for EasyLinkage generation (both link and stub)

servicebridge for web service bridge generation (both REST and SOAP)

bean for web service bean generation

By default, these folders are generated inside the sources folder, but can be configured

using the following compiler property:

iscobol.compiler.generate.root_dir=path

The .class files created by compiling the generated COBOL sources (easydb, servicebridge

and bean) are by default located in the same folder where the main COBOL program .class

is created, in the path specified using the –od compiler option. It is also possible to create

the same subfolder names under the main class folder by using:

iscobol.compiler.generate.keep_structure=true, resulting in a clearer

organization of folders.

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 23 of 33

Compatibility

The compiler now supports the EXHIBIT statement when using the –cv option for IBM

COBOL compatibility. Running the code below

 MOVE "ABC" TO MY-VAR
 EXHIBIT NAMED MY-VAR

when compiled using the –cv option produces the following output on sysout when run:

MY-VAR=ABC

This is similar to the DISPLAY UPON SYSOUT statement, but it’s now fully supported and

doesn’t require code to be manually changed when porting to isCOBOL.

The ESQL DECLARE CURSOR statement has been enhanced to support the SENSITIVE and

INSENSITIVE clauses. Code such as:

 exec sql
 declare curs1 sensitive cursor for
 select * from companies
 end-exec.
 exec sql
 declare curs2 insensitive cursor for
 select * from companies
 end-exec.

are now supported and can be compiled to simplify the migration from other COBOL ESQL

Pre-compilers.

Insensitive allows the cursor to move forward and backward through the data, changes

made while the cursor is open are ignored. Sensitive allows the cursor to move forward

and backwards through the data, changes made while the cursor is open are immediately

available.

This behavior is similar to the runtime configuration iscobol.jdbc.cursor.type, and

both can be used in the same program, allowing additional flexibility.

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 24 of 33

isCOBOL Runtime

Starting from isCOBOL 2020R2, new configuration settings and new library routines are

available to customize behavior and improve compatibility.

The new configuration settings are:

iscobool.key.<keystroke>=search=<context> to customize the search action in a

specific component. By default, pressing Ctrl+F on grid, print-preview and web-browser

makes the Search panel appear. The key combination can be customized: for example it

can be set to Shift+F4 by using the following configuration settings:
iscobol.key.*f=search=

iscobol.key.^f4=search=grid,print-preview,web-browser

If you need to disable the Ctrl+F feature for the web-browser only, the following setting

can be used:
iscobol.key.*f=search=print-preview,grid

iscobol.call_cancel.hook=className to specify a hook class for CALL and CANCEL

statements. The class can be written in pure Java or in COBOL using the appropriate syntax

CLASS-ID to implement the interface “com.iscobol.rts.CallHandler”. The list of required

methods that need to be defined for this interface are:

 public void afterCall(IscobolCall call, Object[] argv);
 public void afterCancel(IscobolCall call);
 public void afterCancelAll();
 public void beforeCall(IscobolCall call, Object[] argv);
 public boolean beforeCancel(IscobolCall call);
 public boolean beforeCancelAll();

iscobol.jdbc.auto_connect=true to automatically connect to the database without

using an explicit ESQL CONNECT statement in the program. When the first ESQL statement

is executed, the connection is automatically established.

iscobol.jdbc.user=userName to supply a username credential without specifying it

in the iscobol.jdbc.url property. This can be used also in conjunction with
iscobol.jdbc.auto_connect=true

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 25 of 33

iscobol.jdbc.password=pwd to supply the connection password without specifying it

in the iscobol.jdbc.url property. This can be used also in conjunction with
iscobol.jdbc.auto_connect=true

New library routines have been implemented to enhance the compatibility with the

MicroFocus® dialect:

CBL_ALLOC_MEM to allocate memory. The allocated memory amount is expressed in

bytes, and it returns a pointer used to release allocated memory.

CBL_FREE_MEM to release the previously allocated memory.

CBL_GET_CURRENT_DIR to retrieve the current folder name.

CBL_READ_DIR to retrieve the current folder absolute path name.

The following is a code snippet of a migrated COBOL program that calls all the new

supported library routines:

 WORKING-STORAGE SECTION.
 77 path-name pic x(256).
 77 path-name-length pic x comp-x.
 77 dir-status-code pic x(2) comp-5.
 77 flags pic x(4) comp-5.
 77 name-length pic x(4) comp-5.
 77 mem-pointer usage pointer.
 77 mem-size pic x(4) comp-5.
 77 mem-flags pic x(4) comp-5.
 77 mem-status-code pic x(2) comp-5.
 ...
 PROCEDURE DIVISION.
 ...
 call "CBL_READ_DIR" using path-name
 path-name-length
 returning dir-status-code
 call "CBL_GET_CURRENT_DIR" using by value flags
 by value name-length
 by reference path-name
 returning dir-status-code
 call "CBL_ALLOC_MEM" using mem-pointer
 by value mem-size
 by value mem-flags
 returning mem-status-code
 call "CBL_FREE_MEM" using by value mem-pointer
 returning mem-status-code

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 26 of 33

isCOBOL Debugger

Starting from isCOBOL 2020R2, the isCOBOL Debugger has been enhanced and can now

debug programs without having access to source files. When compiled with the -d or -dx

options, the compiler now embeds an encrypted copy of the source code in the compiled

.class file. Such a .class file can now be fully debugged anywhere. This is completely

transparent for developers, who will have access to the COBOL source during a debugging

session as they had previously, and can take advantage of the same debugger commands

that need references to source code lines, such:

br 123 MYPROG.cbl

to set a breakpoint on line 123 of MYPROG.cbl program.

This is a major improvement that enhances the usability of the isCOBOL Debugger in any

scenario, from stand-alone debugging (iscrun –d PROGNAME), thin-client debugging

(iscclient –d –hostname ip –port n PROGNAME), and remote debugging for all other

architectures (iscrun –d –r hostname port)

The Debugger can still load source files from disk if the .class programs are compiled with

a previous compiler release for backward compatibility.

In addition, Debugger now has a new integrated View named Console in the isCOBOL IDE

that has the ability to attach and de-attach the standard sysout and syserr in its view.

When the Console is attached, all the sysout and the syserr output is shown in the new

View, using black and red colors respectively. When the Console is de-attached, all the

sysout and syserr are shown back in the system console. This results in a clearer view,

where the Output View is on the bottom-left corner and shows the results of commands

executed from the developer and the single line of code that is executed with “step”

command, and the Console view, when attached to activate, is shown in the bottom-right

corner and shows the sysout/syserr produced by COBOL program or by the isCOBOL

runtime error handling.

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 27 of 33

In Figure 14, Debugger Console view, the bottom-right portion of the Console view shows

the attached sysout/syserr. A pop-up menu is also available to Copy, Select and Clean the

content. Figure 15, Debugger Console settings, shows the dialog that appears when

selecting the Window menu item Settings – Console, that allows redirection of

sysout/syserr which is especially useful in Thin Client, where this change is not dynamic.

Figure 14. Debugger Console view

Figure 15. Debugger Console settings

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 28 of 33

c-treeRTG v11.9

A new version of c-treeRTG. V11.9, is available and embedded in the Veryant 2020R2

release. Version v11.9 contains many new features such as TLS/SSL security

communication between client and server and other improvements.

Additional details are explained in the installed documentation located in the “c-treeRTG

v11.9.0\Server\V11.9.0_Veryant_Delivery.pdf” folder.

TLS/SSL

SSL communication is enabled with a new server configuration setting in the ctsrvr.cfg

configuration file, as shown below:

 SUBSYSTEM COMM_PROTOCOL SSL {
 SERVER_CERTIFICATE_FILE ctree_ssl.pem
 SSL_CONNECTIONS_ONLY YES
 }

The settings allow the definition of the SSL certificate file, and whether an SSL connection

is mandatory (default setting is NO). Additional configuration settings are optionally

available.

If a client is configured with a standard c-tree xml client configuration file, the new

attributes “ssl” and “sslcert” in the <instance> configuration element must be set, as

shown below:

 <config>
 <instance ssl="yes" sslcert="ctsrvr.pem" server="FAIRCOMS@hostname"
 user="admin" password="ADMIN"
 connect="yes" versioncheck="no">
 ...
 </instance>
 </config>

If the client is configured using an isCOBOL properties file, the new settings can be

configured as shown below:
 iscobol.file.index.server=FAIRCOMS@hostname
 iscobol.file.index.user=admin
 iscobol.file.index.password=ADMIN
 iscobol.file.index.ssl=true
 iscobol.file.index.sslcert=/path/filename

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 29 of 33

Other improvements

Additional c-tree client configuration properties have been implemented, such as:

iscobol.file.index.prefetch.ttl=n to specify how long pre-fetched records should

be kept, in seconds

iscobol.file.index.keycompress.rle=true to enable RLE compression on keys

iscobol.file.index.keycompress.vlennod=false to restore the legacy LEADING

compression on keys

iscobol.file.index.memoryfile.persist=false to unload memory files when the run

unit terminates, instead of when the c-treeRTG server shuts down.

The performance of c-treeRTG Server, when handling concurrent file open and close

operations, has been improved, especially when scaling to systems with a large number of

CPU cores and concurrent database connections. Figure 16, c-treeRTG scaling test shows

scaling test results, with the number of files ranging between 1 and 128, running 2,000

iterations and 128 connections. Result times are in seconds.

Figure 16. c-treeRTG scaling test

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 30 of 33

The new c-treeRTG Veryant setup, as shown In Figure 16, c-treeRTG 11.9 setup, contains

additional components, such as the Replication agent, making it simpler to install, and

provides new Drivers with tutorials for additional languages, including C#, C/C++, IOT,

ISQL, Javascript, Node-red and VB. This enhances the interoperability of languages that

share the same data. To enable these features, you need to replace the embedded license,

which only allows access from isCOBOL, with a full license that allow full SQL access and

enables the Replication feature.

Figure 17. c-treeRTG 11.9 setup

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 31 of 33

Additional improvements

isCOBOL compiler can now be integrated in Apache Ant builds. Ant is a software tool for

automating software build processes implemented using Java and is well integrated in

software for automation servers like Jenkins. These automation servers help automate the

parts of software development related to building, testing, and deploying. Products like

Jenkins and Ant are often used together to facilitate continuous integration and

continuous delivery (CI/CD).

An integrated system to use isCOBOL from Apache Ant is now available to simplify the

usage of isCOBOL compiler in Ant build script.

To use isCOBOL inside Ant script you can now add the following tags to the build

configuration file:

 <taskdef name="iscc" classname="com.iscobol.ant.iscc"/>

or use the syntax:

 <project name="HelloWorld" default="build" basedir="."
 xmlns:veryant="antlib:com.iscobol.ant">

The task name “iscc” provides a task to allow compilation, using the syntax shown below:

 <!-- Cobol sources -->
 <property name="src.dir" location="." />
 <!-- Java classes -->
 <property name="build.dir" location="prg" />
 ...
 <iscc
 javacOptions="-classpath ${iscobol-classpath-prop} "
 nosummary="false"
 nowarn="true"
 noerr="true"
 force="true"
 options="-sp=../isdef"
 failOnError="true"
 destDir="${build.dir}">
 <fileset dir="${src.dir}">
 <include name="**/*.cbl"/>
 </fileset>
 </iscc>

Files with a .cbl extension in the current folder and its subfolders are compiled, and the

.class will be generated in the “prg” destination folder.

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 32 of 33

These are the details of supported options in the iscc Ant task:

javac=path to specify the external javac compiler to be used, default is none

javacOptions=options to pass options to the java complier, default is none

nosummary=false to suppress the display of compiler summary information, default is

true

nowarn=true to enable or disable compiler warnings, default is false

noerr=true to enable or disable compiler errors, default is false

force=true to force compilation a COBOL program even if it is not out of date, default is

false

options=options to set the isCOBOL compiler options used by the iscc command,

default is -jc

failOnError=false to continue the build process even if the compiler reports a severe

error, default is true

destDir=path to specify the name of the folder where the compiler output is to be

written, default is none

fileset=fileset to set the standard Ant fileset, defining a group of COBOL sources to be

compiled. For details on the syntax see: https://ant.apache.org/manual/Types/fileset.html

Database Bridge

The EDBI routines generated by the Database Bridge functionality when targeting

PostgreSQL are now certified for PostgreSQL release 12.

EIS improvements

A new overload method in HTTPHandler class has been added to allow setting the

generation of a DummyRoot parameter:

HTTPHandler:>displayEx(content, hasDummyRoot)

The DummyRoot is an automatically generated root element added during the creation of

the XML or JSON representation of a working storage item, if needed.

isCOBOL Evolve 2020 R2 Overview

© Copyright 2020 Veryant. All rights reserved. Page 33 of 33

isCOBOL utilities improvements

The isCOBOL Server Panel now supports the Threads View and Thread stack even when

the Application Server is executed with a JRE.

The graphical ISMIGRATE wizard can now read isCOBOL configuration files when it starts.

This allows you to preload settings to be used in the wizard by using the

iscobol.ismigrate.* and other relevant properties in configuration files, and referencing the

configuration file when starting the wizard. Previously, these variables could only be used

when running ISMIGRATE from the command line.

ISMIGRATE has also been expanded to extend existing files. This feature can be enabled

from the command line by setting the configuration property:

iscobol.ismigrate_open_extend=true

