

© 2021 Veryant. All rights reserved.

isCOBOLTM Evolve
isCOBOL Evolve 2021 Release 2 Overview

isCOBOL Evolve 2021 R2 Overview

© Copyright 2021 Veryant. All rights reserved. Page 2 of 18

Copyright © 2021 Veryant LLC.

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and recompilation. No part of this product or document may be reproduced in
any form by any means without the prior written authorization of Veryant and its licensors if any.

Veryant and isCOBOL are trademarks or registered trademarks of Veryant LLC in the U.S. and other
countries. All other marks are the property of their respective owners.

isCOBOL Evolve 2021 R2 Overview

© Copyright 2021 Veryant. All rights reserved. Page 3 of 18

isCOBOL Evolve 2021 Release 2 Overview

Introduction

Veryant is pleased to announce the latest release of isCOBOL™ Evolve, isCOBOL Evolve

2021 R2.

The new 2021 R2 release has been updated to allow greater integration of isCOBOL

applications running in WebClient and HTML / JavaScript components.

New compatibility enhancements provide greater flexibility when porting from other

dialects.

Details on these enhancements and updates are included below.

isCOBOL Evolve 2021 R2 Overview

© Copyright 2021 Veryant. All rights reserved. Page 4 of 18

WebClient integration with a web page

WebClient is Veryant’s solution to host desktop application in a web environment.

Desktop applications will be rendered as HTML pages and will run unchanged in a

browser. Using WebClient a desktop application can be embedded inside a custom-built

web page to provide additional functionality.

With the 2021R2 release, the range of capabilities have been greatly expanded. isCOBOL

applications can now interact with the underlying web page, and the page can invoke

isCOBOL code. Additionally, a new IWC-PANEL component has been implemented to host

web components inside COBOL screen sections.

Communications is based on messages that COBOL and the web page can exchange to

perform tasks.

A message is a data structure composed of:

• action: a string containing the purpose of the message, and is required

• data a string with the parameters for the action, an optional parameter

• binaryData a byte array with parameters for the action, an optional parameter

COBOL programs have access to the following new routines:

• IWC$INIT to activate the communication between COBOL and the web page

• IWC$GET to read the data sent by the Javascript code in the web page

• IWC$SEND to send data to the web page

• IWC$STOP to stop the communication between COBOL and the web page

To embed a COBOL program in a web page when running in WebClient, thus enabling

communication, a container web page needs to be provided, and the “Compositing

Window Manager” setting in the WebClient configuration for the COBOL application

needs to be enabled.

isCOBOL Evolve 2021 R2 Overview

© Copyright 2021 Veryant. All rights reserved. Page 5 of 18

The web page needs to contain, as a minimum, the following code that defines a div

element that will contain the COBOL application:

<div class="webclientAppContainer webswing-element"
 data-webswing-instance="webclientInstance">
 <div id="loading" class="ws-modal-container">
 <div class="ws-login">
 <div class="ws-login-content">
 <div class="ws-spinner">
 <div class="ws-spinner-dot-1"></div>
 <div class="ws-spinner-dot-2"></div>
 </div>
 </div>
 </div>
 </div>
 </div>
</div>

The data-webswing-instance tag specifies the JavaScript variable that will hold a

reference to the COBOL instance running in WebClient. The object has an options

property that can be used to handle the interaction:

var webclientInstance = {
 options: {
 autoStart: true,
 args: '',
 recording: getParam('recording'),
 debugPort: getParam('debugPort'),
 connectionUrl: '<URL of the webapp as defined in WebClient>',

 compositingWindowsListener:{
 windowOpening: function(win){},
 windowOpened: function(win){},
 windowClosing: function(win){},
 windowClosed: function(win){},
 windowModalBlockedChanged: function(win){}
 },
 customization: function(injector) {
 injector.services.base.handleActionEvent =
 function(actionName, data, binaryData) {
 if (actionName == "action") {
 /* code to handle the action */
 }
 }
 }
 }
}

isCOBOL Evolve 2021 R2 Overview

© Copyright 2021 Veryant. All rights reserved. Page 6 of 18

When WebClient loads the web page, it will enrich the webclientInstance object with

additional properties and methods useful for interacting with the COBOL program.

The handleActionEvent callback is an event handler that will be called when the COBOL

program executes the IWC$SEND routine, and any needed code to carry out the requested

action can be added there.

To send an action from Javascript to the COBOL program the following code can be used:

webclientInstance.performAction (

{actionName: ‘EXECUTE_PGM’, data: ‘INVOICE_PRINT’, binaryData: null}

)

The action details can be retrieved in COBOL by calling the IWC$GET routine.

The following code shows the COBOL side of the communication:

 78 78-iwc-crt-status value 1001.
 77 data-to-send pic x any length.
 01 iwc-struct.
 03 iwc-action pic x any length.
 03 iwc-data pic x any length.
 03 iwc-bytes pic x any length.

 ACTIVATE.
 call "IWC$INIT" using 78-iwc-crt-status
 giving return-code
 SEND-TO-HTML.
 initialize iwc-struct.
 move "ComSample" to iwc-action
 move data-to-send to iwc-data
 call "IWC$SEND" using iwc-struct

 giving return-code
 READ-DATA-FROM-HTML.
 initialize iwc-action
 call "IWC$GET" using iwc-struct
 giving return-code

 if iwc-action = "EXECUTE_PGM"
 call IWC-DATA

 end-if
 DEACTIVATE.
 call "IWC$STOP" giving return-code

isCOBOL Evolve 2021 R2 Overview

© Copyright 2021 Veryant. All rights reserved. Page 7 of 18

Every time the web page sends a message to the application, the COBOL program can

read it calling the IWC$GET routine. If a program is executing an ACCEPT statement, it will

be terminated with the key-status specified in the IWC$INIT routine.

To send a message to the web page, the IWC$SEND can be called passing the same

message structure iwc-struct described above. Communication can be stopped by calling

the IWC$STOP routine.

The result of program running in WebClient is shown in Figure 1, IWC$ routines.

Figure 1. IWC$ routines

The window on the right shows the result of calling a JavaScript function that transforms

the string it receives to lower case as the action data parameter and sends it back to the

COBOL program using the performAction method. The COBOL program can read the

result using the IWC$GET routine.

isCOBOL Evolve 2021 R2 Overview

© Copyright 2021 Veryant. All rights reserved. Page 8 of 18

Using Web Components in COBOL screen sections.

Starting from the 2021R2 release, custom HTML / JavaScript web components can be

embedded in COBOL screen sections when running in WebClient, allowing the creation of

hybrid apps that were not possible before. The feature is very powerful yet easy to use.

On the COBOL side of the program, only COBOL knowledge is required, while on the web

page and component creation and handling, HTML / Javascript and CSS knowledge is

required, as development will be done using a web toolchain.

To host a Javascript component, a new IWC-PANEL control has been implemented for the

SCREEN SECTION. The component is only visible when the application is run in a

WebClient environment, and will be ignored when running as a desktop application.

IWC-PANEL acts as a placeholder in the HTML page, and the actual content will need to be

injected from the HTML / Javascript page, just like it’s done in traditional web applications.

An example of the panel is provided in the code below:

03 f-map iwc-panel

 js-name "f-map"
 line 5 column 2
 size 68 cells lines 15 cells
 value fmap-struct
 event procedure FMAP-PROC.

The value property of the control holds the message structure used to send actions to the

panel in the web page. The message is sent by performing a MODIFY statement on the

value property. The event procedure will be called when the web page executes a

performAction on the panel, and an INQUIRE on the value property of the IWC-PANEL will

return the message that has been sent.

The JS-NAME property holds an identifier that will be sent to the web page upon creation,

so that the corresponding web component can be created. For every IWC-PANEL in a form,

a callback in the web page is called, with the details necessary to perform component

initialization. The webclientInstance.options.compositingWindowsListener object

defines callbacks for various events, ranging from windows opening, closing and IWC-

PANEL creation.

isCOBOL Evolve 2021 R2 Overview

© Copyright 2021 Veryant. All rights reserved. Page 9 of 18

An IWC-PANEL creation will trigger the windowOpened callback, and a reference to the

IWC-PANEL is passed as function argument. The callback can check the .name property to

determine which control has been created and react accordingly.

A sample code snippet is:

…
compositingWindowsListener:{

windowOpened: function (win){
 if (win.name == 'map'){
 createMap(win);
 }
}

…

The webclientInstance object has a getWindows() method that will return all windows

and IWC-PANEL that the COBOL application has created, along with the DOM (Document

Object Model, the in-memory representation of the HTML page created by the browser)

element of each.

A sample project is provided that shows how to integrate a Google map component in a

COBOL application, and how to interact with it.

isCOBOL Evolve 2021 R2 Overview

© Copyright 2021 Veryant. All rights reserved. Page 10 of 18

How to integrate a Google map component

This code snippet below is taken from the Google maps integration sample, and shows

the code in WORKING-STORAGE that defines the structure for the messages to be sent to

and received from the web, the definition of the new IWC-PANEL control in the SCREEN

SECTION and the PROCEDURE DIVISION showing sample code to invoke actions in the web

page to perform specific tasks and handle incoming messages.

The snippet shows the interaction with a Google map element created in the page, and

how to send JSON (the native Javascript data format) data as argument of the action.

When the user selects an office from the COBOL combo-box, the MODIFY statement is

executed on the IWC-PANEL, causing a “selectOffice” action with a JSON representation of

the selected office to be sent to the web page, and the Javascript code on the page will

center the map on the requested office location.

When the user clicks on a pin in the Google map, the Javascript program calls the panel’s

performAction method, causing the IWC-PANEL event procedure to be called. Performing

an INQUIRE on the value property of the panel will return the data structure sent by the

JavaScript code.

 WORKING-STORAGE SECTION.
 01 fmap-struct.
 03 fmap-ACTION PIC X any length.
 03 fmap-DATA PIC X any length.
 03 fmap-BYTES PIC X any length.
 SCREEN SECTION.
 01 Mask.
 03 f-map iwc-panel
 js-name "f-map"
 line 5 column 2
 size 68 cells lines 15 cells
 value fmap-struct
 event procedure FMAP-PROC.

 ...

...

isCOBOL Evolve 2021 R2 Overview

© Copyright 2021 Veryant. All rights reserved. Page 11 of 18

 SHOW-ON-MAP.
 move "selectOffice" to fmap-action
 move offices(office-index) to selected-office
 set objJsonStream to jsonStream:>new(selected-office, 1);;
 set strbuffer to string-buffer:>"new"
 objJsonStream:>writeToStringBuffer(strbuffer)
 move strbuffer:>toString to fmap-data
 modify f-map value fmap-struct.

 FMAP-PROC.
 if event-type = ntf-iwc-event
 inquire f-map value in fmap-struct
 evaluate fmap-action
 when "pinClicked"
 move fmap-data to sel-description
 ...
 when "pinClosed"
 ...
 end-evaluate
 end-if.

The result of program running in WebClient is shown in Figure 2, IWC-PANEL control.

Figure 2. IWC-PANEL control

isCOBOL Evolve 2021 R2 Overview

© Copyright 2021 Veryant. All rights reserved. Page 12 of 18

The new features let developers easily create a web portal with an HTML menu system

that starts COBOL programs hosted in containers inside the main page. Several programs

can be started at once and can be managed using the features described above. A sample

menu application is included in the installation, that uses Iframes to hold each instance of

COBOL programs, and can be easily inspected and customized to provide a full-blown

web solution for legacy applications. The sample is an evolution of our trusty old

isapplication sample, fully evolved to be a modern web application.

Taking some care when styling the COBOL application will make the end result look like a

complete native web application, with the advantages of having a familiar COBOL

development environment to provide modernization of code.

Figure 3, Web portal and WebClient, shows the result of running the new provided sample

that uses the techniques described above to provide an integrated environment with

HTML code and COBOL programs running together seamlessly.

Figure 3. Web portal and WebClient

isCOBOL Evolve 2021 R2 Overview

© Copyright 2021 Veryant. All rights reserved. Page 13 of 18

Figure 4, HTML / JS and COBOL SCREEN, shows an HTML / JS menu that run COBOL

programs with SCREEN SECTION styled to look like native web applications.

Figure 4. HTML/JS and COBOL SCREEN

COBOL
SCREEN

HTML
JS

isCOBOL Evolve 2021 R2 Overview

© Copyright 2021 Veryant. All rights reserved. Page 14 of 18

isCOBOL Compiler

Starting from the isCOBOL 2021R2 release, the compiler option -sp, used to set the

location of copy files, is not needed to include standard isCOBOL copy files. When a

COBOL source refers to an isCOBOL .def file, the compiler automatically looks for it in the

isCOBOL_SDK sample/isdef folder.

The above folder is also searched for even if the -sp option is supplied, but a .def file is not

found in the specified location.

The ANY LENGTH data item can now be used in LINKAGE SECTION items in the called

program, even if the caller program passes a fixed length data item, allowing for more

flexibility. An item declared as ANY LENGTH in the LINKAGE SECTION will accept both

fixed length or variable length parameters, and if the caller passes a fixed length data item,

the called program will treat it as a fixed length size.

The ON EXCEPTION clause is now supported on SET ENVIRONMENT statements to catch

the failed SET on sticky configurations. This is useful, for example, when the Application

Server loads its configuration that should not be overwritten by a ThinClient application

that loads a remote configuration file.

For example, if the server starts with the configuration:

iscobol.as.authentication=1

and a program running in ThinClient executes:

 set environment "as.authentication" to "0"
 on exception
 display "setenv failed"
 end-set

the ON EXCEPTION clause will be executed as the SET statement of this sticky

configuration fails.

isCOBOL Evolve 2021 R2 Overview

© Copyright 2021 Veryant. All rights reserved. Page 15 of 18

Compatibility with other COBOLs

To enhance the compatibility with MicroFocus and IBM COBOL, a new compiler

configuration iscobol.compiler.command_line_linkage=true can be used to preload a

linkage data item in the main program. This allows passing a command line parameter

directly to a linkage data item in the executed program, and the parameters received in

chaining are automatically set in the LINKAGE SECTION.

Also, a compiler directive $SET is now available to specify this feature on a specific COBOL

source program, for example:
 $SET "COMMAND_LINE_LINKAGE" "1".

 PROGRAM-ID. MY_PROG.

A possible use of this feature, besides compatibility with other dialect, is when running a

batch program that is usually called from another COBOL program, which passes needed

arguments in the LINKAGE SECTION. If such program needs to be run stand-alone from

the command line, using the above option will allow to specify the arguments in the

command line, and they will be copied from the chaining parameters to the LINKAGE

SECTION, allowing it to run unmodified.

Binary and Octal values can now be also specified using the MicroFocus syntax

b"binaryValue" and o"octalValue" when compiling with –cm compiler option. Without this

option the isCOBOL compiler only supports the equivalent syntax B#binaryValue are

O#octalValue.

This is a snippet of code now supported:
 78 CONST-BINARY value B"101".
 78 CONST-OCTAL value O"12345670".

 MOVE B"101" TO MYVAR1.
 MOVE O"12345670" TO MYVAR2.

isCOBOL Evolve 2021 R2 Overview

© Copyright 2021 Veryant. All rights reserved. Page 16 of 18

isCOBOL Runtime

In the 2021R2 release several new configuration settings have been added:

iscobol.code_prefix.reload=2 can be used to reload the whole set of classes specified in

the code_prefix configuration variable after calling the C$UNLOAD library routine. This

option can be used to automatically reload classes in a ThinClient installation after an

upgrade, to ensure that all classes are updated.

The isCOBOL Server Panel has been upgraded to allow reloading of classes for applications

running with the new configuration variable. The new button to force a reload is located

in the tool-bar, as shown in Figure 5, isCOBOL Panel with new reload logic.

Figure 5. Web isCOBOL Panel with new reload button

isCOBOL Evolve 2021 R2 Overview

© Copyright 2021 Veryant. All rights reserved. Page 17 of 18

New configurations have also been implemented to allow print jobs to be executed

asynchronously. When a CLOSE print-file statement is executed, a thread that manages

the entire print job is created, allowing execution to continue in the application so that

users can continue to work without needing to wait for the print job to complete. The new

configurations are:

iscobol.print.spooler_async=true|false (default: true) to set the print job to be run

asynchronously

iscobol.print.pdf_async=true|false (default: false) to have the PDF print job to be

executed asynchronously.

Performance of print jobs have been improved, both as a result of the async mode

implementation and as a better Application Server TCP packet handling when running in

ThinClient.

Figure 6, Print jobs comparison, shows the gains of printing using the new 2021R2 release

compared to the previous 2021R1.

Figure 6. Print jobs comparison

All times are in seconds.

Hardware details of client machine:

Windows 10 Pro i7-8550U CPU @ 1.80GHz 16GB

Hardware details of server machine:

macOS Big Sur Apple M1 16GB

isCOBOL Evolve 2021 R2 Overview

© Copyright 2021 Veryant. All rights reserved. Page 18 of 18

isCOBOL EIS

HTTPClient is a class that provides many useful features to communicate with existing

HTTP services like Web Service (REST/SOAP) HTTP servers, and HTTPHandler is a class that

provides a communication bridge between COBOL programs and HTML5/JavaScript

pages using the HTTP protocol. Both classes have been upgraded with new features.

HTTPClient

The HTTPClient class now allows you to specify the Encoding charset in the following

methods:

displayEx (stream, hasDummyRoot, charset)

displayJSON (json, hasDummyRoot, charset)

The dummyRoot parameter is now supported in the getResponseJSON method:

getResponseJSON(json, encoding, hasDummyRoot)

hasDummyRoot is an alphanumeric data item or literal hosting a Boolean value. If the

Boolean value is TRUE, then the top-level item of Record-Definition is discarded and will

not appear in the JSON stream

HTTPHandler

The dummyRoot parameter is now supported in the acceptEx and acceptFromJSON

methods:

acceptEx(params, hasDummyRoot)

acceptFromJSON(params, hasDummyRoot)

