veryant

isCOBOL™ Evolve
isCOBOL Evolve 2021 Release 2 Overview

© 2021 Veryant. All rights reserved.

isCOBOL Evolve 2021 R2 Overview

Copyright © 2021 Veryant LLC.

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and recompilation. No part of this product or document may be reproduced in

any form by any means without the prior written authorization of Veryant and its licensors if any.

Veryant and isCOBOL are trademarks or registered trademarks of Veryant LLC in the U.S. and other
countries. All other marks are the property of their respective owners.

© Copyright 2021 Veryant. All rights reserved. Page 2 of 18

isCOBOL Evolve 2021 R2 Overview

isCOBOL Evolve 2021 Release 2 Overview

Introduction

Veryant is pleased to announce the latest release of isCOBOL™ Evolve, isCOBOL Evolve
2021 R2.

The new 2021 R2 release has been updated to allow greater integration of isCOBOL
applications running in WebClient and HTML / JavaScript components.

New compatibility enhancements provide greater flexibility when porting from other
dialects.

Details on these enhancements and updates are included below.

© Copyright 2021 Veryant. All rights reserved. Page 3 of 18

isCOBOL Evolve 2021 R2 Overview

WebClient integration with a web page

WebClient is Veryant's solution to host desktop application in a web environment.
Desktop applications will be rendered as HTML pages and will run unchanged in a
browser. Using WebClient a desktop application can be embedded inside a custom-built
web page to provide additional functionality.

With the 2021R2 release, the range of capabilities have been greatly expanded. isCOBOL
applications can now interact with the underlying web page, and the page can invoke
isCOBOL code. Additionally, a new IWC-PANEL component has been implemented to host

web components inside COBOL screen sections.

Communications is based on messages that COBOL and the web page can exchange to
perform tasks.

A message is a data structure composed of:
e action: a string containing the purpose of the message, and is required
e data a string with the parameters for the action, an optional parameter

e binaryData a byte array with parameters for the action, an optional parameter

COBOL programs have access to the following new routines:
e JWCSINIT to activate the communication between COBOL and the web page
e |WCSGET to read the data sent by the Javascript code in the web page
e |WCSSEND to send data to the web page

e |WCSSTOP to stop the communication between COBOL and the web page

To embed a COBOL program in a web page when running in WebClient, thus enabling
communication, a container web page needs to be provided, and the “Compositing
Window Manager” setting in the WebClient configuration for the COBOL application
needs to be enabled.

© Copyright 2021 Veryant. All rights reserved. Page 4 of 18

isCOBOL Evolve 2021 R2 Overview

The web page needs to contain, as a minimum, the following code that defines a div

element that will contain the COBOL application:

<div class="webclientAppContainer webswing-element"
data-webswing-instance="webclientInstance">
<div id="loading" class="ws-modal-container">
<div class="ws-login">
<div class="ws-login-content">
<div class="ws-spinner">
<div class="ws-spinner-dot-1"></div>
<div class="ws-spinner-dot-2"></div>
</div>
</div>
</div>
</div>
</div>
</div>

The data-webswing-instance tag specifies the JavaScript variable that will hold a
reference to the COBOL instance running in WebClient. The object has an options

property that can be used to handle the interaction:

var webclientInstance = {
options: {
autoStart: true,
args: '',
recording: getParam('recording'),
debugPort: getParam('debugPort'),
connectionUrl: '<URL of the webapp as defined in WebClient>',
compositingWindowsListener:{
windowOpening: function(win){},
windowOpened: function(win){},
windowClosing: function(win){},
windowClosed: function(win){},
windowModalBlockedChanged: function(win){}
¥
customization: function(injector) {
injector.services.base.handleActionEvent =
function(actionName, data, binaryData) {
if (actionName == "action") {
/* code to handle the action */
}

© Copyright 2021 Veryant. All rights reserved.

Page 5 of 18

isCOBOL Evolve 2021 R2 Overview

When WebClient loads the web page, it will enrich the webclientInstance object with
additional properties and methods useful for interacting with the COBOL program.

The handleActionEvent callback is an event handler that will be called when the COBOL
program executes the IWCSSEND routine, and any needed code to carry out the requested
action can be added there.

To send an action from Javascript to the COBOL program the following code can be used:

webclientInstance.performAction (

{actionName: ‘EXECUTE_PGM’, data: €INVOICE_PRINT’, binaryData: null}
)
The action details can be retrieved in COBOL by calling the IWCSGET routine.

The following code shows the COBOL side of the communication:

78 78-iwc-crt-status value 1001.
77 data-to-send pic x any length.
01 iwc-struct.
03 iwc-action pic x any length.
03 iwc-data pic x any length.
03 iwc-bytes pic x any length.
ACTIVATE.

call "IWC$INIT" using 78-iwc-crt-status
giving return-code
SEND-TO-HTML.
initialize iwc-struct.
move "ComSample" to iwc-action
move data-to-send to iwc-data
call "IWC$SEND" using iwc-struct
giving return-code
READ-DATA-FROM-HTML .
initialize iwc-action
call "IWC$GET" using iwc-struct
giving return-code
if iwc-action = "EXECUTE_PGM"
call IWC-DATA
end-if
DEACTIVATE.
call "IWC$STOP" giving return-code

© Copyright 2021 Veryant. All rights reserved. Page 6 of 18

isCOBOL Evolve 2021 R2 Overview

Every time the web page sends a message to the application, the COBOL program can
read it calling the IWCSGET routine. If a program is executing an ACCEPT statement, it will
be terminated with the key-status specified in the IWCSINIT routine.

To send a message to the web page, the IWCSSEND can be called passing the same
message structure iwc-struct described above. Communication can be stopped by calling

the IWCSSTOP routine.

The result of program running in WebClient is shown in Figure 1, IWCS routines.

Figure 1. IWCS routines

127.0.0.1:8080/issample/ X +

< C ©® 127.0.0.1:8080/issample/

isCOBOL Sample WebClient edition

O+ Internal objects of the isCOBOL framework

View Source [F2]

Routines used to manage communication between COBOL
programs and javascript programs when running in WebClient

Run Program [F5]

(is) iscOBOL Samples - 2021R2 (=] (2] [x]| (] (==](x]
l_j New Features — IWC comnunication
= (s 2021R2 ~ Start Stop
H - 2] IWC-PANEL
Y =l wCs* routines - Datato send
fis) 2021R1 Data: |ABC Send
(i) 2020R2
/i) 2020R1 v —Log
[:7] GUI controls and their handling 11:20 IWCHGET abc ~
120 'WC$SEND ABC
L Library routines usage 1 1L
11:19 IWC$INIT IWC comunication OF v
-/ | Intrinsic functions usage

| Exit

The window on the right shows the result of calling a JavaScript function that transforms
the string it receives to lower case as the action data parameter and sends it back to the
COBOL program using the performAction method. The COBOL program can read the

result using the IWCSGET routine.

© Copyright 2021 Veryant. All rights reserved.

Page 7 of 18

isCOBOL Evolve 2021 R2 Overview

Using Web Components in COBOL screen sections.

Starting from the 2021R2 release, custom HTML / JavaScript web components can be
embedded in COBOL screen sections when running in WebClient, allowing the creation of
hybrid apps that were not possible before. The feature is very powerful yet easy to use.
On the COBOL side of the program, only COBOL knowledge is required, while on the web
page and component creation and handling, HTML / Javascript and CSS knowledge is

required, as development will be done using a web toolchain.

To host a Javascript component, a new IWC-PANEL control has been implemented for the
SCREEN SECTION. The component is only visible when the application is runin a
WebClient environment, and will be ignored when running as a desktop application.

IWC-PANEL acts as a placeholder in the HTML page, and the actual content will need to be
injected from the HTML / Javascript page, just like it's done in traditional web applications.

An example of the panel is provided in the code below:

03 f-map iwc-panel

js-name "f-map"

line 5 column 2

size 68 cells lines 15 cells
value fmap-struct

event procedure FMAP-PROC.

The value property of the control holds the message structure used to send actions to the
panel in the web page. The message is sent by performing a MODIFY statement on the
value property. The event procedure will be called when the web page executes a
performAction on the panel, and an INQUIRE on the value property of the IWC-PANEL will
return the message that has been sent.

The JS-NAME property holds an identifier that will be sent to the web page upon creation,
so that the corresponding web component can be created. For every IWC-PANEL in a form,
a callback in the web page is called, with the details necessary to perform component
initialization. The webclientInstance.options.compositingWindowsListener object
defines callbacks for various events, ranging from windows opening, closing and IWC-
PANEL creation.

© Copyright 2021 Veryant. All rights reserved. Page 8 of 18

isCOBOL Evolve 2021 R2 Overview

An IWC-PANEL creation will trigger the windowOpened callback, and a reference to the
IWC-PANEL is passed as function argument. The callback can check the .name property to
determine which control has been created and react accordingly.

A sample code snippet is:

compositingWindowsListener:{

windowOpened: function (win){
if (win.name == "map'){
createMap(win);

}

The webclientInstance object has a getWindows () method that will return all windows
and IWC-PANEL that the COBOL application has created, along with the DOM (Document
Object Model, the in-memory representation of the HTML page created by the browser)
element of each.

A sample project is provided that shows how to integrate a Google map componentin a
COBOL application, and how to interact with it.

© Copyright 2021 Veryant. All rights reserved. Page 9 of 18

isCOBOL Evolve 2021 R2 Overview

How to integrate a Google map component

This code snippet below is taken from the Google maps integration sample, and shows
the code in WORKING-STORAGE that defines the structure for the messages to be sent to
and received from the web, the definition of the new IWC-PANEL control in the SCREEN
SECTION and the PROCEDURE DIVISION showing sample code to invoke actions in the web
page to perform specific tasks and handle incoming messages.

The snippet shows the interaction with a Google map element created in the page, and
how to send JSON (the native Javascript data format) data as argument of the action.
When the user selects an office from the COBOL combo-box, the MODIFY statement is
executed on the IWC-PANEL, causing a “selectOffice” action with a JSON representation of
the selected office to be sent to the web page, and the Javascript code on the page will
center the map on the requested office location.

When the user clicks on a pin in the Google map, the Javascript program calls the panel’s
performAction method, causing the IWC-PANEL event procedure to be called. Performing
an INQUIRE on the value property of the panel will return the data structure sent by the
JavaScript code.

WORKING-STORAGE SECTION.

01 fmap-struct.
03 fmap-ACTION PIC X any length.
03 fmap-DATA PIC X any length.
03 fmap-BYTES PIC X any length.

SCREEN SECTION.

01 Mask.
03 f-map iwc-panel
js-name "f-map"
line 5 column 2
size 68 cells lines 15 cells
value fmap-struct

event procedure FMAP-PROC.

© Copyright 2021 Veryant. All rights reserved. Page 10 of 18

isCOBOL Evolve 2021 R2 Overview

SHOW-ON-MAP.
move "selectOffice" to fmap-action
move offices(office-index) to selected-office
set objJsonStream to jsonStream:>new(selected-office, 1);;
set strbuffer to string-buffer:>"new"
objJsonStream:>writeToStringBuffer(strbuffer)
move strbuffer:>toString to fmap-data
modify f-map value fmap-struct.

FMAP-PROC.

if event-type = ntf-iwc-event
inquire f-map value in fmap-struct
evaluate fmap-action
when "pinClicked"

move fmap-data to sel-description

when "pinClosed”
end-evaluate

end-if.

The result of program running in WebClient is shown in Figure 2, IWC-PANEL control.

Figure 2. IWC-PANEL control

127.0.0.1:8080/issample/ X + o ~ B X
¢« C ® 127.0.0.1:8080/issample/ oo v @ :
isCOBOL Sample WebClient edition Veryant Support Search

/is) isCOBOL Samples - 2021R2 [=] (2] [x]| (AT [=Hoflx]

|_QJ New Features Select an office: 'Veryant LLC v | Selected office X
- s) 2021R2 2 Veryant LLC

M s fiwC-PANEL

-~ [£7] IWC$* routines
) 2021R1
S,

4455 Murphy Canyon Road, San
Diego, USA

2020R2

X

i
[
(G
[
f
[

&}

) 2020R1 v

[:2] GUI controls and their handling
m Library routines usage 32.8250690

-/ | Intrinsic Functions usage -117.1186740

O+ Internal objects of the isCOBOL framework

The iwc-panel allows you to integrate HTML/javaScript componetes -
into Cobol screen when running in WebClient Exit

View Source [F2] Run Program [F5]

© Copyright 2021 Veryant. All rights reserved. Page 11 of 18

isCOBOL Evolve 2021 R2 Overview

The new features let developers easily create a web portal with an HTML menu system
that starts COBOL programs hosted in containers inside the main page. Several programs
can be started at once and can be managed using the features described above. A sample
menu application is included in the installation, that uses Iframes to hold each instance of
COBOL programs, and can be easily inspected and customized to provide a full-blown
web solution for legacy applications. The sample is an evolution of our trusty old
isapplication sample, fully evolved to be a modern web application.

Taking some care when styling the COBOL application will make the end result look like a
complete native web application, with the advantages of having a familiar COBOL

development environment to provide modernization of code.

Figure 3, Web portal and WebClient, shows the result of running the new provided sample
that uses the techniques described above to provide an integrated environment with
HTML code and COBOL programs running together seamlessly.

Figure 3. Web portal and WebClient

¥ WebClient HTML menusample X+ [X

<« C ® 127.0.0.1:8080/samplemeny, 7 & » ° ;
veryant = Home page Support
Q Close~ RS

3 Data Maintenance v

THE COBOL TECHNOLOGY INNOVATOR

v

Experience a new level of web integration

© Copyright 2021 Veryant. All rights reserved. Page 12 0of 18

isCOBOL Evolve 2021 R2 Overview

Figure 4, HTML /JS and COBOL SCREEN, shows an HTML / JS menu that run COBOL
programs with SCREEN SECTION styled to look like native web applications.

Figure 4. HTML/JS and COBOL SCREEN

¥ WebClient HTML menu sample X 4 o - o X

< C ® 127.00.1:8080/samplemenu/ * » @
Homepage Support Q =P M x =
Customer M Invoice Products © &3

3 Data Maintenance

Invoice N° 2021 Product Id Description

Order date 06/08/21 C O B O L
CorelDraw 12 (L COREL CorelDraw Graphic Suite 12 (Upg SC R E E N

Menu items Product CorelDraw 12 (F COREL CorelDraw Graphic Suite 12 (Full

Admin Functions

CorelDraw 11 (F COREL CorelDraw Graphic Suite 11 (Full
Cubasis VST 5.0 PINNACLE Cubasis VST 5.0
Header/Detail Product Id

NGS Draw Mast NGS graphic tablet Draw Master 20x15¢ Row Price

~

G CrEEBIEED NGS Cadboy 14 NGS graphic tablet Cadboy 14x10cm US 105.00
ol . SONYT2XP/S SONYT2XP/S SONYT2XP/S Centrl.2G 512M 60G DVD= 52.50

Wo1 INTUOS3 INTUOS3 WACOM graphic tablet INTUOS3 Classic 21000

Report
Wo6 INTUOS3 A5 USB

GRAPHIRE3 Stu WACOM graphic tablet GRAPHIRE3 Stuc 21.00
wii CintiQ15TFT GRAPHIRE3 Stu WACOM graphic tablet GRAPHIRE3 Stuc 350
CORELL CorelDraw 12 (Upg) GRAPHIRE3 Cla WACOM graphic tablet GRAPHIRE3 Clas 262.50
COREL3 CorelDraw 11 (Full) VOLITO2A6US WACOM graphic tablet VOLITO 2 A6 USB 829.50
INTUOS3 A5 US WACOM graphic tablet INTUOS3 A5 USB

INTUOS3A6 US WACOM graphic tablet INTUOS3 A6 USB

Copyright © 2014-2021 Veryant. All rights reserved. Version 1.0.0

© Copyright 2021 Veryant. All rights reserved. Page 13 of 18

isCOBOL Evolve 2021 R2 Overview

isCOBOL Compiler

Starting from the isCOBOL 2021R2 release, the compiler option -sp, used to set the
location of copy files, is not needed to include standard isCOBOL copy files. When a
COBOL source refers to an isCOBOL .def file, the compiler automatically looks for it in the
isCOBOL_SDK sample/isdef folder.

The above folder is also searched for even if the -sp option is supplied, but a .def file is not
found in the specified location.

The ANY LENGTH data item can now be used in LINKAGE SECTION items in the called
program, even if the caller program passes a fixed length data item, allowing for more
flexibility. An item declared as ANY LENGTH in the LINKAGE SECTION will accept both
fixed length or variable length parameters, and if the caller passes a fixed length data item,
the called program will treat it as a fixed length size.

The ON EXCEPTION clause is now supported on SET ENVIRONMENT statements to catch
the failed SET on sticky configurations. This is useful, for example, when the Application
Server loads its configuration that should not be overwritten by a ThinClient application
that loads a remote configuration file.

For example, if the server starts with the configuration:
iscobol.as.authentication=1

and a program running in ThinClient executes:

set environment "as.authentication" to "@"
on exception
display "setenv failed"
end-set

the ON EXCEPTION clause will be executed as the SET statement of this sticky
configuration fails.

© Copyright 2021 Veryant. All rights reserved. Page 14 of 18

isCOBOL Evolve 2021 R2 Overview

Compatibility with other COBOLs

To enhance the compatibility with MicroFocus and IBM COBOL, a new compiler
configuration iscobol.compiler.command_line_linkage=true can be used to preload a
linkage data item in the main program. This allows passing a command line parameter
directly to a linkage data item in the executed program, and the parameters received in
chaining are automatically set in the LINKAGE SECTION.

Also, a compiler directive $SET is now available to specify this feature on a specific COBOL
source program, for example:

$SET "COMMAND_LINE_LINKAGE" "1".
PROGRAM-ID. MY_PROG.

A possible use of this feature, besides compatibility with other dialect, is when running a
batch program that is usually called from another COBOL program, which passes needed
arguments in the LINKAGE SECTION. If such program needs to be run stand-alone from
the command line, using the above option will allow to specify the arguments in the
command line, and they will be copied from the chaining parameters to the LINKAGE
SECTION, allowing it to run unmodified.

Binary and Octal values can now be also specified using the MicroFocus syntax
b"binaryValue" and o"octalValue" when compiling with —cm compiler option. Without this
option the isCOBOL compiler only supports the equivalent syntax B#binaryValue are
O#octalValue.

This is a snippet of code now supported:

78 CONST-BINARY value B"101".
78 CONST-OCTAL value 0"12345670".

MOVE B"101" TO MYVAR1.
MOVE 0"12345670" TO MYVAR2.

© Copyright 2021 Veryant. All rights reserved. Page 15 0f 18

isCOBOL Evolve 2021 R2 Overview

isCOBOL Runtime

In the 2021R2 release several new configuration settings have been added

iscobol.code_prefix.reload=2 can be used to reload the whole set of classes specified in
the code_prefix configuration variable after calling the CSUNLOAD library routine. This

option can be used to automatically reload classes in a ThinClient installation after an
upgrade, to ensure that all classes are updated.

The isCOBOL Server Panel has been upgraded to allow reloading of classes for applications
running with the new configuration variable. The new button to force a reload is located

in the tool-bar, as shown in Figure 5, isCOBOL Panel with new reload logic

Figure 5. Web isCOBOL Panel with new reload button

(i) Application Server - 2021 R2 build#1050.1 - Listening on 0.0.0.0:10999

Panel Server Clients Files KeyView Users Threads

0@ YO & Wasa Hx | @ & & | [30E
Cl ._|Unload all groarams so the next Clients will use up to date classesl
lients vie T w

Connected Clients List:

Number of connected clients:
Type TID ‘ Login time]

3
User] Host address | Host name] Launched program ‘ Stack B
5 Aug 23, 2021 5:26:45 PM [0] admin 127.0.0.1 127.0.0.1 ASASGPANEL]
El-
2 Aug 23, 2021 5:26:17 PM [-1] Davide 127.0.0.1 127.0.0.1 SAMPLES

© Copyright 2021 Veryant. All rights reserved.

Page 16 of 18

isCOBOL Evolve 2021 R2 Overview

New configurations have also been implemented to allow print jobs to be executed
asynchronously. When a CLOSE print-file statement is executed, a thread that manages
the entire print job is created, allowing execution to continue in the application so that
users can continue to work without needing to wait for the print job to complete. The new

configurations are:

iscobol.print.spooler_async=true|false (default: true) to set the print job to be run
asynchronously

iscobol.print.pdf_async=true|false (default: false) to have the PDF print job to be
executed asynchronously.

Performance of print jobs have been improved, both as a result of the async mode
implementation and as a better Application Server TCP packet handling when running in
ThinClient.

Figure 6, Print jobs comparison, shows the gains of printing using the new 2021R2 release
compared to the previous 2021R1.

Figure 6. Print jobs comparison

Standalone tests B2 2021r1 B4 202172 K4
|character print job with 200 pages on -P SPOOLER 18,27 6,35
|graphical print job with 20 pages on -P SPOOLER 11,37 4,38

ThinClient tests B2 2021r1 B4 202172 K3
character print job with 200 pages on -P SPOOLER 16,93 1,75
?graphical print job with 20 pages on -P SPOOLER 69,80 14,75|
|character print job with 200 pages on -P PDF 17,53 13,70
fgraphical print job with 20 pages on -P PDF 64,86 22,053
|character print job with 200 pages on -P PREVIEW 6,79 2,04
'graphical print job with 20 pages on -P PREVIEW 59,10 14,25/

All times are in seconds.

Hardware details of client machine:

Windows 10 Pro i7-8550U CPU @ 1.80GHz 16GB
Hardware details of server machine:

macOS Big Sur Apple M1 16GB

© Copyright 2021 Veryant. All rights reserved. Page 17 of 18

isCOBOL Evolve 2021 R2 Overview

isCOBOL EIS

HTTPClient is a class that provides many useful features to communicate with existing
HTTP services like Web Service (REST/SOAP) HTTP servers, and HTTPHandler is a class that
provides a communication bridge between COBOL programs and HTML5/JavaScript
pages using the HTTP protocol. Both classes have been upgraded with new features.

HTTPClient

The HTTPClient class now allows you to specify the Encoding charset in the following
methods:

displayEx (stream, hasDummyRoot, charset)

displayJSON (json, hasDummyRoot, charset)

The dummyRoot parameter is now supported in the getResponseJSON method:
getResponseJSON(json, encoding, hasDummyRoot)

hasDummyRoot is an alphanumeric data item or literal hosting a Boolean value. If the
Boolean value is TRUE, then the top-level item of Record-Definition is discarded and will
not appear in the JSON stream

HTTPHandler

The dummyRoot parameter is now supported in the acceptEx and acceptFromJSON
methods:

acceptEx(params, hasDummyRoot)

acceptFromJSON(params, hasDummyRoot)

© Copyright 2021 Veryant. All rights reserved. Page 18 of 18

