

© 2022 Veryant. All rights reserved.

isCOBOLTM Evolve
isCOBOL Evolve 2022 Release 2 Overview

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 2 of 26

Copyright © 2022 Veryant LLC.

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and recompilation. No part of this product or document may be reproduced in
any form by any means without the prior written authorization of Veryant and its licensors if any.

Veryant and isCOBOL are trademarks or registered trademarks of Veryant LLC in the U.S. and other
countries. All other marks are the property of their respective owners.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 3 of 26

isCOBOL Evolve 2022 Release 2 Overview

Introduction

Veryant is pleased to announce the latest release of isCOBOL Evolve, isCOBOL Evolve 2022

R2.

isCOBOL Evolve provides a complete environment for the development, deployment,

maintenance, and modernization of COBOL applications.

The new compiler supports an integrated PreProcessing feature and increased

compatibility and performances with other COBOL dialects.

The new WebClient release now supports Java 17 and offers several improvements and

higher performance on slow networks.

isCOBOL Evolve 2022 R2 GUIs are now Hi-DPI aware and include improvements,

refinements, and new compatibility features to simplify the migration of existing COBOL

programs to the isCOBOL Evolve suite.

Details on these enhancements and updates are included below.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 4 of 26

isCOBOL Compiler

The isCOBOL 2022 R2 compiler includes a new feature that allows developers to write a

PreProcessor in COBOL or in Java to integrate custom logic to be applied to source code.

Compatibility with other COBOL dialects and performances has been improved to simplify

migrations, and isCOBOL ESQL has been improved to ease migration from IBM DB2 PRE

and Oracle Pro*COBOL (ESQL precompilers).

PreProcessor integration

A new compiler configuration,“iscobol.compiler.custompreproc”, has been added to

enable Preprocessor parsing. Set this configuration to one or more classes that implement

the isCOBOL compiler interface “com.iscobol.compiler.custpreproc.LinePreProcessor". For

example, when compiling a program with this set in the configuration:

iscobol.compiler.custompreproc=MyPreProc SecondPreProc

the compiler will pass every line of the source code being compiled to the MyPreProc

class, which may perform source code changes. The resulting line is then passed to the

SecondPreProc class, which can perform additional changes, and the resulting source

code line is finally passed to the compiler for compilation.

isCOBOL already supports the use of the compiler option "iscobol.compiler.regexp”

that can be used to replace text within the source code, but the new PreProcessor feature

is more flexible and allows the parsing of multiple lines of code for analysis.

Both configuration options can be used simultaneously, letting you make complex code

substitutions. The regexp will be executed first, then the custom preprocessor.

To implement the com.iscobol.compiler.custpreproc.LinePreProcessor interface, the class

needs to include a “process” method with the signature:

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 5 of 26

public void process(java.lang.String originalLine,
 int sourceFormat,
 java.lang.String fileName,
 int lineNumber,
 java.lang.String[] compilerOptions,
 com.iscobol.compiler.custpreproc.ProcessResult result)
 throws com.iscobol.compiler.custpreproc.ProcessException

So, the source can be written in COBOL declaring a CLASS-ID that has a METHOD-ID

receiving these parameters:

 class-id. MyPreProc as "MyPreProc" implements LinePreProcessor.
 repository.
 class LinePreProcessor as "com.iscobol.compiler.custpreproc.LinePreProcessor"
 class ProcessResult as "com.iscobol.compiler.custpreproc.ProcessResult"
 class ProcessException as "com.iscobol.compiler.custpreproc.ProcessException"
 ...
 method-id. process as "process".
 linkage section.
 77 original-line object reference "java.lang.String".
 77 source-format object reference "int".
 77 source-file-name object reference "java.lang.String".
 77 line-number object reference "int".
 77 compiler-options object reference "java.lang.String[]".
 77 result object reference ProcessResult.
 procedure division using original-line,
 source-format,
 source-file-name,
 line-number,
 compiler-options,
 result
 raising ProcessException.

For example, this method can be used to implement custom logic to write comments for a

block of code, or to replace some code with another. You can also return Warnings or

Errors exactly like the standard compiler produces. Another example use of the

PreProcessor is to enforce or suggest code changes to comply with a desired standard set

of rules.

When compiling sources with the -lf option, the resulting .list file will contain the output

after the processing executed by the preprocessor classes is finished.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 6 of 26

When debugging a COBOL program compiled using the preprocessor, the source shown

will be the original source, as written by the developer, but the instructions executed will

be the result of the preprocessor output.

To better follow the logic of the class-id MyPreProc, you can debug the COBOL source with

the Remote Debugger feature. To do that, first compile with this variable set in the

configuration:

iscobol.rundebug=2

and start the Remote Debugger with the command:

iscrun –d –r

This will start the Remote Debugger on the default localhost using the default port

number 9999 where the compilation process is waiting for the debugger execution. If the

compilation is executed on a different server, you can pass the hostname of that server

when launching the Remote Debugger.

For additional details on this feature, refer to the updated 2022 R2 documentation and

new samples installed in the sample folder “compiler-pre-process”.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 7 of 26

Option to generate optimized class

isCOBOL 2022 R2 provides a new compiler option named “-zmf” that internally activates a

new compiler engine designed to maximize runtime performance and minimize resource

usage. The new compiler engine has been developed for maximum compatibility with

Enterprise IBM Cobol and Micro Focus COBOL. This early version can be used for batch

COBOL programs without user interface. There are some syntax limitations as well in this

first version.

The new compiler engine uses top-down (recursive descent) parsers as opposed to

bottom-up parsers generated by a YACC-like tool. Based on the most popular parser

generator, JavaCC, the new compiler engine runs in three steps:

• COBOL syntax validation

• Walk to collect data and to generate functions

• Emitters, LAMBDA based to emit Java classes

As shown Figure 1, NCR CSAMPLE Benchmark, performance comparison was made using

NCR CSAMPLE benchmark test between isCOBOL 2022 R2 with “-zmf” and other COBOL

compilers from the market. The test was run on Windows 11 Pro 64-bit with i7-8550U CPU

@ 1.80GHz and 16 GB of RAM. The test shows that isCOBOL’s new compiler engine beat our

competitors by running 13% - 80% faster and executing at least 22% more instructions per

second.

Figure 1. NCR CSAMPLE Benchmark.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 8 of 26

Improved Compatibility with other COBOLs

Enhancements have been implemented in this release to improve compatibility with

MicroFocus COBOL, such as:

- support for THREAD-LOCAL-STORAGE SECTION and IS THREAD-LOCAL clauses.

The THREAD-LOCAL-STORAGE Section describes data which is unique to each thread,

useful for resolving contention problems related to concurrent access to the same data-

item. If a data-item is declared inside this new SECTION, every thread has its own copy of

the variable instead of sharing the same with other threads.

The IS THREAD-LOCAL clause can be used in the WORKING-STORAGE SECTION or on the

FD level to declare that a data-item or File Record needs to be treated with the thread

logic described above, making every thread access its separate variables or record

definitions.

Here is a code snippet that shows how to declare variables in the THREAD-LOCAL-

STORAGE SECTION and variables and FD with the THREAD-LOCAL clause:
 file section.
 fd file-prod is thread-local.
 01 prod-rec.
 03 prod-key pic 9(4).
 03 prod-desc pic x(90).
 working-storage section.
 77 thr1 handle of thread.
 77 thr2 handle of thread.
 77 counter pic 9(4) value 0 is thread-local.
 thread-local-storage section.
 01 w-rec.
 03 w-key pic 9(4).
 03 w-desc pic x(90).

- new compiler option -smfu to manage the Underscore in sources with MF compatibility

With isCOBOL, underscore and hyphen are treated as the same character, but in the

MicroFocus compiler the underscore and hyphen are 2 different characters. When a

COBOL program contains the same variable or paragraph name, with the only difference

being an underscore and hyphen, the isCOBOL compiler will throw a Severe “Ambiguous

identifier” and “Duplicate procedure name” error message when compiling.

With the new compiler option –smfu, isCOBOL treats underscore and hyphen as 2

different characters, allowing sources as described to be compiled without errors.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 9 of 26

For example, the following code can be compiled correctly:
 working-storage section.
 77 my-var pic x.
 77 my_var pic x.
 ...
 procedure division.
 ...
 move "a" to my-var.
 move "b" to my_var.
 perform SHOW-MY-VAR.
 perform SHOW-MY_VAR.
 SHOW-MY-VAR.
 display "my-var=" my-var.
 SHOW-MY_VAR.
 display "my_var=" my_var.

- the semicolon is now accepted by the compiler as universal path separator

This simplifies sharing file paths between operating systems. Windows uses the “;” as a

path separator, while MacOS and Linux use “:”. The isCOBOL compiler will translate the

universal path separator, “;”, to the OS-specific character.

For example, the following command used to compile on Windows:

iscc –sp=copylib;other-copy/cpy program-name

can now be used without changes when compiling in Linux or MacOS.

This change also benefits the isCOBOL IDE when sharing the same Workspace to compile

programs using different operating systems such as Windows, Linux and MacOS.

Enhancements have been made in this release to improve compatibility with IBM COBOL,

such as:

- support for JSON PARSE and JSON GENERATE statements.

The existing XML PARSE and XML GENERATE statements gave you the ability to manage

XML streams, and starting from this release, the JSON PARSE and JSON GENERATE
statements are supported to manage JSON streams.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 10 of 26

IsCOBOL already supports the “com.iscobol.rts.JSONStream” class to manage JSON

streams, but now direct migration from IBM COBOL sources that contain these statements

is supported by the compiler. Here’s a code snippet of the instructions:
 working-storage section.
 ...
 01 Grp.
 05 Acc-No pic AA9999.
 05 More.
 10 code pic S99V9 occurs 2.
 05 cr-date pic 99/99/9999.
 01 json-stream pic x(80).
 01 i binary pic 99.
 procedure division.
 ...
 initialize grp
 move "AB1234" to acc-no
 move 1.2 to code(1)
 move -3 to code(2)
 move "01/07/2022" to cr-date
 JSON GENERATE json-stream from grp
 count i
 name of code is 'Value'
 suppress cr-date
 on exception
 display "Error on JSON generate"
 not on exception
 display "Successful JSON generate"
 end-json.

 initialize grp
 JSON PARSE json-stream into grp
 with detail
 name of code is 'Value'
 end-json.

The generated JSON will be:

{"Grp":{"Acc-No":"AB1234","More":{"Value":[1.2,-3.0]}}}

When the COBOL program receives a JSON stream, the JSON PARSE statement will parse

the stream and set the values in the corresponding WORKING STORAGE items.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 11 of 26

Improved Compatibility with other ESQL Precompilers

Enhancements have been made in this release to improve compatibility with RDBMS

PreCompilers such as IBM DB2 PRE and Oracle Pro*COBOL.

- Support for Common Table Expressions (CTE)

A Common Table Expression (CTE) is the result set of a query which exists temporarily and

for use only within the context of a larger query. The result of a CTE is not stored and exists

only for the duration of the query. CTEs enable users to easily write and maintain complex

queries with increased readability and simplification. This reduction in complexity is

achieved by deconstructing ordinarily complex queries into simple blocks to be used and

reused as necessary in rewriting the query. CTEs initiate with the WITH keyword. Here’s a

code snippet as an example:
 EXEC SQL
 DECLARE CUR CURSOR FOR
 WITH Sales_CTE AS
 (SELECT SalesPersonID, SalesOrderID, YEAR(OrderDate) AS SalesYear
 INTO :wrk-person-id, :wrk-order-id, :wrk-year
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL)

 SELECT SalesPersonID, COUNT(SalesOrderID) AS TotalSales, SalesYear
 FROM Sales_CTE
 GROUP BY SalesYear, SalesPersonID
 ORDER BY SalesPersonID, SalesYear
 END-EXEC.

Note that some databases might not support this syntax, so ensure it’s supported by your

RDBMS before using. The larger RDBMS like IBM DB2, Oracle, Postgres, and Microsoft SQL

Server support it.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 12 of 26

- Ability to specify stored procedure and function names through host variables

Previously, the ESQL CALL statement required the procedure or function name to be a

constant string. Now in 2022 R2 the name can be specified using host variables. For

example:

 MOVE "myproc" TO WRK-PROC-NAME.
 EXEC SQL
 CALL :wrk-proc-name (:wrk-param-1 IN, :wrk-param-2 IN)
 INTO :wrk-result
 END-EXEC.

This feature lets you write more dynamic code.

- Support for Oracle Pro*COBOL SQLDA structure

The compatibility with ESQL preprocessors has been increased in this version by

supporting the Oracle Pro*COBOL format of the SQLDA structure. An SQLDA (SQL

Descriptor Area) is a set of group items that store all the information the database needs

about select-list items or place-holders for bind variables, except their values.

Previously, SQLDA was supported only in compatibility with the IBM DB2 preprocessor.

From the new isCOBOL 2022 R2 release, SQLDA is also supported with Oracle Pro*COBOL.

The SQLDA structure from Oracle Pro*COBOL is defined as follows:
 01 SELDSC.
 02 SQLDNUM PIC S9(9) COMP VALUE 100.
 02 SQLDFND PIC S9(9) COMP.
 02 SELDVAR OCCURS 100 TIMES.
 03 SELDV PIC S9(9) COMP.
 03 SELDFMT PIC S9(9 COMP.
 03 SELDVLN PIC S9(9) COMP.
 03 SELDFMTL PIC S9(4) COMP.
 03 SELDVTYP PIC S9(4) COMP.
 03 SELDI PIC S9(9) COMP.
 03 SELDH-VNAME PIC S9(9) COMP.
 03 SELDH-MAX-VNAMEL PIC S9(4) COMP.
 03 SELDH-CUR-VNAMEL PIC S9(4) COMP.
 03 SELDI-VNAME PIC S9(9)
COMP.
 03 SELDI-MAX-VNAMEL PIC S9(4) COMP.
 03 SELDI-CUR-VNAMEL PIC S9(4) COMP.
 03 SELDFCLP PIC S9(9) COMP.
 03 SELDFCRCP PIC S9(9) COMP.
 01 XSELDI.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 13 of 26

 03 SEL-DI OCCURS 100 TIMES PIC S9(4) COMP.
 01 XSELDIVNAME.
 03 SEL-DI-VNAME OCCURS 100 TIMES PIC X(80).
 01 XSELDV.
 03 SEL-DV OCCURS 100 TIMES PIC X(80).
 01 XSELDHVNAME.
 03 SEL-DH-VNAME OCCURS 100 TIMES PIC X(80).

01 BNDDSC.

 02 SQLDNUM PIC S9(9) COMP VALUE 100.
 02 SQLDFND PIC S9(9) COMP.
 02 BNDDVAR OCCURS 100 TIMES.
 03 BNDDV PIC S9(9) COMP.
 03 BNDDFMT PIC S9(9) COMP.
 03 BNDDVLN PIC S9(9) COMP.
 03 BNDDFMTL PIC S9(4) COMP.
 03 BNDDVTYP PIC S9(4) COMP.
 03 BNDDI PIC S9(9) COMP.
 03 BNDDH-VNAME PIC S9(9) COMP.
 03 BNDDH-MAX-VNAMEL PIC S9(4) COMP.
 03 BNDDH-CUR-VNAMEL PIC S9(4) COMP.
 03 BNDDI-VNAME PIC S9(9) COMP.
 03 BNDDI-MAX-VNAMEL PIC S9(4) COMP.
 03 BNDDI-CUR-VNAMEL PIC S9(4) COMP.
 03 BNDDFCLP PIC S9(9) COMP.
 03 BNDDFCRCP PIC S9(9) COMP.
 01 XBNDDI.
 03 BND-DI OCCURS 100 TIMES PIC S9(4) COMP.
 01 XBNDDIVNAME.
 03 BND-DI-VNAME OCCURS 100 TIMES PIC X(80).
 01 XBNDDV.
 03 BND-DV OCCURS 100 TIMES PIC X(80).
 01 XBNDDHVNAME.
 03 BND-DH-VNAME OCCURS 100 TIMES PIC X(80).

These data items are used in DESCRIBE, OPEN and FETCH ESQL statements, for example:

 EXEC SQL DESCRIBE BIND VARIABLES FOR Stmt1 INTO BNDDSC END-EXEC.
 EXEC SQL DESCRIBE SELECT LIST FOR Stmt1 INTO SELDSC END-EXEC.
 EXEC SQL OPEN Cur1 USING DESCRIPTOR BNDDSC END-EXEC.
 EXEC SQL FETCH Cur1 USING DESCRIPTOR SELDSC END-EXEC.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 14 of 26

GUI enhancements

Many improvements to GUI controls have been implemented in this release. The isCOBOL

framework is now fully dpi-aware. New properties and events are supported on several

controls to enhance and improve GUI applications.

Fully dpi-aware

High DPI screens are common, and DPI scaling is essential to ensure the correct scaling of

graphical screens across devices.

High DPI screens have higher pixel density compared to regular screens, and not scaling

correctly could result in screen fonts being too small to be readable, or just not looking

good. Applications are defined as DPI-aware if they can scale fonts and images to

maintain the correct aspect-ratio and quality across devices.

When running an application in Windows, for example, if the application is not dpi-aware

(known also as dpi-unaware), the operating system automatically manages the dpi scaling,

but causes quality loss as a result of the upscaling. Starting from isCOBOL 2022 R2, the

framework is dpi-aware and can scale to maintain a good quality output.

For example, running the Samples menu program on a 144 DPI display (a Windows system

with 150% character size scaling) with isCOBOL 2022 R1 or previous versions, the screen

looked like Figure 2, Entry-field program not dpi-aware.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 15 of 26

Figure 2. Samples menu program not dpi-aware. Figure 3. Samples menu program

dpi-aware.

Running the same sample program on the same 168 DPI display with isCOBOL 2022 R2, the

screen looks like Figure 3. Entry-field program dpi-aware.

Previous isCOBOL versions used a virtualized dpi-aware approach, increasing the pixel

representation and losing quality, while the new isCOBOL version uses a real dpi-aware

scaling, increasing the font sizes to keep a high-quality look. The same applies to images

and icons.

If the previous virtualized dpi-aware approach is needed, it can be restored on Windows

systems as follows: locate the isrun.exe (or the executable file used to start the program),

right click on it and choose the “Properties” menu item, navigate to the “Compatibility”

tab, click on “Change high DPI settings”, check the “Override high DPI scaling behavior”

and choose “System” for “Scaling performed by:”.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 16 of 26

New controls features

Several graphical controls that have been improved in the latest release:

- Check-Box and Radio-Button controls are now affected by a new configuration option

named iscobol.gui.icons_scaling. When it is set to true, resizing by using the LM-

ZOOM layout-manager automatically scales the icons of the screen’s Check-Box and

Radio-Button controls.

- Check-Box, Radio-Button and Push-Button controls now support the BITMAP-SCALE

property, previously supported only on bitmap controls. When using bitmaps on the

check-box, radio-button, and push-button controls with the new BITMAP-SCALE

property set to 1, the bitmap is resized along with the window when using the LM-

ZOOM layout-manager. This property affects all the bitmaps that are defined in

Bitmap-Default, Bitmap-Disabled, Bitmap-Disabled-Selected, Bitmap-Number, Bitmap-

Pressed, Bitmap-Rollover, Bitmap-Rollover-Selected and Bitmap-Selected for controls

that have only a bitmap, or both bitmap and text with the position defined in the Title-

Position property. A code snippet of controls with the new property is shown below.

03 check-box ...
 bitmap bitmap-handle bmp-handle bitmap-width 19
 bitmap-number 1 bitmap-rollover 2
 bitmap-scale 1.
 03 push-button ...
 bitmap bitmap-handle bmp-handle bitmap-width 19
 bitmap-number 3 bitmap-rollover 4
 bitmap-scale 1.
 03 radio-button ...
 bitmap bitmap-handle bmp-handle bitmap-width 19
 bitmap-number 5 bitmap-rollover 6
 bitmap-scale 1.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 17 of 26

- Check-Box supports two new properties named CHECK-ON-VALUE and CHECK-OFF-

VALUE allowing you to specify alphanumeric values associated with checked and

unchecked states. This simplifies the management of check-boxes that need to store a

different value than default numeric values 0 and 1, for example a flag that is stored

with N and Y. Here’s a code snippet of a check-box with a pic x variable set to N or Y:
 77 w-flag pic x.
 ...
 03 check-box ...
 check-off-value "N" check-on-value "Y"
 value w-flag.

This new syntax is also useful when placing the check-box controls inside a grid using the
statement “Display Check-Box upon GridName (-1, 3)” to show different values in the
grid filter when the column includes a check-box.

- Radio-Button supports alphanumeric values in the property Group-Value, allowing a

pic x variable to be used to hold the selection in a radio button group instead of the

default numeric variable.

Here’s a code snippet of radio buttons with a pic x(n) variable than can be set to “A”

“B” or “C”:
 77 w-type pic x.
 ...
 03 radio-button ...
 group 1 group-value "A" value w-type.
 03 radio-button ...
 group 1 group-value "B" value w-type.
 03 radio-button ...
 group 1 group-value "C" value w-type.

- Push-Button supports a new property named ROLLOVER-BORDER-COLOR to specify

the border color of flat buttons when the mouse hovers on the control and can be

used in conjunction with the existing properties Rollover-Background-Color and

Rollover-Foreground-Color.

A code snippet of a button with the new property is shown below:
 03 push-button flat ...
 rollover-background-color rgb x#A6F9DE
 rollover-foreground-color rgb x#D51515
 rollover-border-color rgb x#990066.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 18 of 26

- Grid and List-Box controls support a new property named EXPORT-FILE-OPEN to

automatically open an Excel file after it has been produced by the Export feature. This

simplifies the opening of the files created on the client. Here’s a code snippet of

controls with the new property:

03 list-box ...
 export-file-name w-path
 export-file-format "xlsx"
 export-file-open 1.
 03 grid ...
 export-file-name w-path
 export-file-format "xlsx"
 export-file-open 1.

List-Box now supports the SEARCH-PANEL property using the same rules as defined in the grid
control to manage the search feature. By default, this property is set to 0, making the search
panel appear on top of the control only when the user presses the Ctrl-F keyboard shortcut. By
setting the property to 1, the search panel will always be visible at the top of the List-box. To
completely disable the search panel, the property can be set to -1. You can to change the
shortcut key used to open the search panel with the keystroke configuration setting. To set
the shortcut to Ctrl+G instead of Ctrl+F, for example, use the setting:
iscobol.key.*g=search=list-box

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 19 of 26

The following is a code snippet of a list-box with the new property set to 1 and Figure

4, List-box search-panel in action, showing the search panel used to filter the content of

items loaded in the list-box.
 03 list-box ...
 search-panel 1.

Figure 4. List-box search-panel in action.

Tree-View supports a new MSG-MOUSE-CLICKED event, fired by both the standard

Tree and Table-View tree when the NOTIFY-MOUSE style is set. This allows an action to

be performed when clicking on an item instead of the standard double-click. When

used on a Table-View, the special name EVENT-DATA-1 is set to the column number

where the click happened.

Here's a code snippet to use the new event supported:

 03 tv1 tree-view table-view ...
 display-columns (1, 20)
 notify-mouse event tv1-event.
...
tv1-event.
 Evaluate event-type

 ...
 when msg-mouse-clicked
 if event-data-1 = 1 | click on first column
 ...
 end-if
 end-evaluate.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 20 of 26

isCOBOL Runtime

Improvements to library routines and configuration settings have been added to the new

isCOBOL runtime:

Improvements to library routines

Several library routines have been improved in the 2022 R2 release:

- W$MENU library supports a new attribute named "show-lines" to show the lines

connecting menu items in the hamburger menu. The following code snippet activates

the new attribute:
 call "W$MENU" using wmenu-set-attribute "show-lines" "yes"

The result when running the snippet is shown in in Figure 5, Show-lines attribute of

Hamburger menu. The menu on the right has the new attribute set to “yes”.

Figure 5. Show-Lines attribute of Hamburger menu.

- C$COPY and C$FSCOPY routines support an additional optional parameter to specify

that the indexed file to be copied is encrypted. This works in conjunction with the

JISAM file handler by using the same key set in the configuration option

iscobol.file.encryption.key. The code snippet below shows the usage of the new

parameter:
 call "C$COPY" using src-path, dest-path, "I", 1
 call "C$FSCOPY" using src-path, dest-path, 1

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 21 of 26

- WIN$PRINTER library is now more flexible when creating PDF files using the –P PDF

flag or saving a PDF file in the Print Preview. With previous releases it was mandatory

to CALL the WINPRINT-SET-ATTRIBUTE op-code to set the attribute FONT_FOLDER or

FONT_FOLDER_EMBED to embed fonts in the PDF file. In the current release, if these

attributes are not set, isCOBOL will search for fonts in the default operating system’s

font folder: C:\Windows\Fonts on Windows, /usr/share/fonts on Linux and

/Library/Fonts on MacOS, to embed fonts and use the Identity-H encoding in the

generated PDF file.

New configurations

New configuration settings have been added in this release:

- iscobol.file.index.open_hook=ProgramName can be used to specify a hook

program to be called before a file is opened, and allows the file path or file handler

class to be modified on the fly. The ProgramName must declare two parameters

received in linkage section as follows:
linkage section.
77 file-path pic x(300).
77 file-class pic x(300).
procedure division using file-path, file-class.

The hook program is executed just before the file is opened and, if necessary, can

update the value of the two parameters to change the file path or the file handler. This

flexible solution can be used, for example, to easily migrate programs from a Fat-Client

to a Thin-Client architecture, where the “local working files” are not on the client PC,

but are located on the server, and files might have to be kept separate for different

users.

- iscobol.floating_point_format=ibm_hfp to store data-items with usage 'float' or

'double' using the IBM hexadecimal floating-point format (known also as HFP by IBM),

instead of the default “ieee_754”, the technical standard for floating-point arithmetic

established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). In

comparison to IEEE 754 floating point, the HFP by IBM format has a longer coefficient,

and a shorter exponent.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 22 of 26

- iscobol.gui.nested_embedded_proc_check=true to check for nested accepts in

embedded procedures. When this configuration option is set, a specific exception is

thrown. This helps the developer easily identify and correct any nested accepts found

in the code.

- iscobol.file.index.ctshmemdir=directory to set the sharedmem directory for the

CTREEJ file handler. On Unix platforms the c-treeRTG server shares a directory with the

c-treeRTG clients when the communication is performed using the shared memory

protocol. When using multiple c-treeRTG servers, it’s important to configure the

SHMEM_DIRECTORY in each server’s ctsrvr.cfg configuration files, and set the same

value in this new isCOBOL configuration setting, so that every server uses a separate

folder for SHAREMEM communication.

- iscobol.file.index.endiancheck=false to skip the byte endianness check made

by CTREEJ file handler during connection. By default, the check is made to ensure that

the byte endianness of both client and server is the same. In cases where this check is

not necessary, such as when accessing files not containing native numeric data types,

the check can be relaxed so the connection can succeed.

Additionally, it’s now possible to configure the exception values returned when the user

just presses a letter without any additional special key. This helps in situations such as

when accepting a screen containing only controls not used for editing, for example push-

buttons, allowing the user to quickly choose an option by just pressing a letter without the

need to press it in combination with Alt or Ctrl. For example, configuring:

iscobol.key.a=exception=101

iscobol.key.b=exception=102

when the user presses the “a” key, the program intercepts the exception-value 101, and

102 is received when pressing the “b” key.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 23 of 26

isCOBOL Debugger

The isCOBOL Debugger has been enhanced in the 2022 R2 release to improve the usability

when using different LAFs. These are the features added in the new release:

- colors configured in Debugger can now follow the standard LAF color settings

The debugger’s “Fonts and Colors” window, from the menu’s Settings/Customize option,

is where you would set the different fonts and colors for different parts of the Debugger.

In 2022 Release 2, you can set the “default LAF colors”, and the result will be different

when running on different operating systems or when running with a different LAF. The

colors will then be more coherent, for example the Hint displayed when the mouse is on a

data item, will look the same as the Hint displayed for the buttons. The new setting is

shown in Figure 6, Debugger LAF color.

Figure 6. Debugger LAF color.

- new option -a for Debugger's infostack command to show all available info

The infostack is a command that can be used in the command-line to list all paragraphs

and programs involved in the stack. With the new option –a, the source file and line number

are shown in the output. For example this is the output of the command with the new –a

option executed while debugging:

+ MAIN [THREAD_BRIDGE] source/THREAD-BRIDGE.cbl:34

 + MAIN [ISCUSTOMER] source/ISCUSTOMER.cbl:265

 + AFTER-ACCEPT [ISCUSTOMER] source/ISCUSTOMER.cbl:291

 + READ-NEXT [ISCUSTOMER] source/ISCUSTOMER.cbl:424

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 24 of 26

WebClient

isCOBOL WebClient 2022 R2 is Veryant’s solution for running desktop applications in a

browser, and it has been updated to support Java 17, to complete the process started with

the 2022 R1 release to certify all Veryant products with all current LTS Java versions: 1.8, 11

and 17.

The new version of WebClient has been optimized to better handle low speed and high

latency connections. It now also supports window transparency, and has improved touch

screen integration. The session recording and mirroring and new Admin console are

among the many other improvements.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 25 of 26

isCOBOL EIS

isCOBOL EIS, Veryant’s solution to write web-enabled COBOL programs, is constantly

updated to provide more comprehensive web solutions. As of version isCOBOL 2022 R2,

the HTTPClient class can consume HEAD requests to retrieve only header fields.

HTTPClient

HTTPClient is a class that enables COBOL programs to interact with Web Services. This

class has been updated with these new method signatures:

public void doHead (String strUrl, HTTPData.Params p)

public void doHead (String strUrl)

The new methods will perform an HTTP HEAD request on the provided URL and using

optional HTTP parameters.

The HTTP HEAD method requests HTTP headers from the server as if the document was

requested using the HTTP GET method. The only difference between HTTP HEAD and GET

requests is that for HTTP HEAD, the server only returns headers without the body.

The HTTP HEAD method is much faster than the HTTP GET method because much less

data is transferred in HEAD requests. Browsers use the HEAD method to update

information about cached resources to check if the resource has been modified since the

last time it was accessed. If the resource has not been modified, browsers reuse the local

copy without issuing a new request. Otherwise, they request an updated version of the

resource with a GET request.

The HEAD method can be also used to check if a file on the server exists, without actually

downloading it if not really necessary.

isCOBOL Evolve 2022 R2 Overview

© Copyright 2022 Veryant. All rights reserved. Page 26 of 26

Additional improvements

isCOBOL 2022 R2 release improves the JUTIL utility.

A new option -make is now supported to create an empty Jisam file from the xml

dictionary. This approach is equivalent to the ctutil -make option already supported by

ctutil for c-TreeRTG.

Here’s an example of the new option used to create an empty Jisam file named “products”

based on its definition stored in “product.xml”:

jutil –make products products.xml

Note that “products.xml” is the file dictionary that describes the indexed file with all its

details and is created by isCOBOL’s compiler when using the -efd option.

