

© 2023 Veryant. All rights reserved.

isCOBOLTM Evolve
isCOBOL Evolve 2023 Release 1 Overview

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 2 of 33

Copyright © 2023 Veryant LLC.

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and recompilation. No part of this product or document may be reproduced in
any form by any means without the prior written authorization of Veryant and its licensors if any.

Veryant and isCOBOL are trademarks or registered trademarks of Veryant LLC in the U.S. and other
countries. All other marks are the property of their respective owners.

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 3 of 33

isCOBOL Evolve 2023 Release 1 Overview

Introduction

Veryant is pleased to announce the latest release of isCOBOL Evolve, isCOBOL Evolve 2023

R1.

isCOBOL Evolve provides a complete environment for the development, deployment,

maintenance, and modernization of COBOL applications.

Starting from this release, an extension for Visual Studio Code is provided to edit, compile

and debug isCOBOL sources and projects.

The new c-treeRTG release supports the web tool Data Replication Manager to easily

configure and monitor replications from a web browser.

The new WebClient release includes the new Test Tool product that provides test

automation.

isCOBOL Evolve 2023 R1 supports new compatibility features to simplify the migration of

existing COBOL programs to the isCOBOL Evolve suite.

Details on these enhancements and updates are included below.

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 4 of 33

Visual Studio Code

Visual Studio Code, also known as VS Code, is a source-code editor made by Microsoft for

Windows, Linux and macOS. It is very popular and customizable using extensions. Veryant

isCOBOL Extension for Visual Studio Code allows COBOL developers to create and manage

isCOBOL projects, edit sources, and run and debug isCOBOL programs. Settings are

available to configure the location of the isCOBOL SDK, the compiler options used when

compiling, the run options, the editor and much more.

These settings can be global, which are valid for any project, or project-specific.

The Veryant isCOBOL Extension provides several useful new commands, accessible using

the shortcut key Shift-Ctrl-P on Windows and Linux and Shift-Cmd-P on MacOS. COBOL

developers can use these commands to create new isCOBOL projects, create new source

and copybook files with a default template and useful source code helper functions,

compile source code, and run debugger-specific commands.

When compiled in debug mode, the VS code debugger can be used to debug isCOBOL

programs, supporting common debugging features such as stepping in code, setting

breakpoints, evaluating variables and setting watches.

Debugging is supported starting from isCOBOL 2023 R1, while editing is supported for all

isCOBOL versions.

As shown Figure 1, Editing in the Veryant isCOBOL Extension, the COBOL source is edited

and compiled in VS Code. Figure 2, Debugging in the Veryant isCOBOL Extension, shows the

isCOBOL Debugger is in action.

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 5 of 33

Figure 1. Editing in the Veryant isCOBOL Extension.

Figure 2. Debugging in the Veryant isCOBOL Extension.

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 6 of 33

WebClient Test Tool

The isCOBOL WebClient installer contains a new product named Test Tool. With Test Tool

you can interactively create test cases for your isCOBOL character or graphical application

running in WebClient. Test Tool is a web application that lets you record a test case,

consisting of a series of mouse clicks and keyboard events a user performs when running

an isCOBOL application, then set assertions on expected results and later playing back the

events and checking that the application still works as intended. Multiple tests can be

automated using Selenium Grid.

As shown in Figure 3, WebClient Test Tool installer, the new product has been selected to

be installed along with the WebClient Server and Admin.

Figure 3. WebClient Test Tool installer.

WebClient Test Tool is a separate service that can be installed on the same server where

WebClient is running or on a different server. To start the service in foreground mode,

issue the command:

webcclient-testtool

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 7 of 33

To run the Windows service or Linux daemon in the background, the command is:

webclient-testtool -start

The Test Tool application can be reached using a web browser and navigating to the URL

http://localhost:8888/

From the html interface you can create test projects and start recording the actions taken

when using the isCOBOL program running in WebClient. Every time a mouse click in the

application is detected a new assertion is created. An assertion is a set of properties that

will be validated in the test case, like component type, value, path, etc.

As shown in Figure 4, WebClient Test Tool recording, the right panel shows the WebClient

application running and the left panel shows the list of recorded actions.

Figure 4. WebClient Test Tool recording.

When all the needed Assertion steps are created, click the Finish button, and the recorded

actions are stored in a file in the project folder. The saved tests can be downloaded or

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 8 of 33

played back to verify that changes in the isCOBOL application work as intended.

Assertions are validated in the toolbox. Playback can be stopped, paused, and run step by

step. Assertions can be edited or added, and breakpoints can be set just like when using a

debugger.

Figure 5, WebClient Test Tool result, shows the isCOBOL program running in WebClient, and

the results of the performed test cases.

Figure 5. WebClient Test Tool result.

A test suite is a collection of tests that can be grouped to automate test cases.

A suite is a configuration file where you define which test cases to run and set options to

be used. Automated test cases require Selenium Grid, a smart proxy server that makes it

easy to run tests in parallel on multiple machines. This is done by routing commands to

remote web browser instances, where one server acts as the hub. This hub routes test

commands that are in JSON format to multiple registered Grid nodes.

A Selenium Grid can be set up either in your local environment or as a third-party service.

To set the Selenium Grid in the WebClient Test Tool, set the URL of the running Selenium

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 9 of 33

Hub, for example: http://localhost:4444. After the connection is validated, choose the

platform and browser based on the availability of the environment on Selenium nodes.

Finally, you can choose a “single run-through” or a “parallel run”. The first option executes

test cases one-by-one, one instance at a time. The second option can run tests in parallel,

and you can set the number of instances you want to run at the same time or after a

timeout set in seconds.

As shown in Figure 6, WebClient Test Tool Suite with Selenium, the suite is ready to be

executed on different browsers.

Figure 6. WebClient Test Tool Suite with Selenium.

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 10 of 33

When Selenium is used with WebClient Test Tool, it also provides a simple REST API to

execute a test suite with one or more tests from an external application. A POST request

can be sent to http://localhost:8888/rest/runTest , setting the Content-Type header to

"application/json" with the following body:

{
 "parallel": false,
 "maxRunningParallel": 1,
 "rampUpPeriod": 1,
 "runCount": 1,
 "testCaseParameters": [{
 "project": "project 1",
 "file": "test 1",
 "name": "Test",
 "webswingAppUrl": "http://localhost:8080/isapplication",
 "webswingUsername": "admin",
 "webswingPassword": "admin",
 "platform": "WINDOWS",
 "browser": "chrome",
 "headless": false,
 "enabled": true
 }]

}

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 11 of 33

C-Tree Replication Manager

The current v3.0.2 release supports a new product named Replication Manager. It is a web

GUI tool you can use to easily configure replication between different c-tree servers. It can

also be used to monitor the replication status. The Replication Manager, also known as

Memphis, can be installed on the same server as c-tree server or on a different server.

Memphis automatically detects the c-tree servers running that are configured to be

managed by the replication manager.

After starting the executable file named “Memphis” and the c-treeRTG servers in the

network, you can open a browser and enter the URL: http://127.0.0.1:8080 or

https://127.0.0.1:8443 to use the HTTPS protocol and see the main menu as shown in

Figure 7, Memphis web menu,

Figure 7. Memphis web menu.

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 12 of 33

Clicking on the Replication Manager button opens a new browser tab with the Replication

Manager application at URL http://127.0.0.1:8080/ReplicationManager/index.html and the

list of available c-tree servers is shown as depicted in Figure 8, Replication Manager View.

Figure 8. Replication Manager View.

The other links shown in Figure 7, Memphis web menu above can be used to open the SQL

Explorer and Monitor web applications. These are the same as the existing c-tree web-

tools and are now integrated in Memphis.

In the Replication Manager’s application, you can drag a “Source” server over a “Target”

server to create a Replication plan, based on a Publication where you can define if the

replication is for SQL tables, ISAM files or both. You can also filter ISAM files included in

specific folders that need to be included or excluded from the replication. The last steps of

the configuration process are: Subscribe the Publication, choosing if the replication is

unidirectional or bidirectional, and Deploy the replication plan. After the Deploy, if the

replication has started correctly, the line connecting the two c-tree servers turns green as

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 13 of 33

shown in Figure 9, Replication Plan deployed, where the data on the FAIRCOMS server

running on Windows are replicated on the FAIRCOMS server running on Ubuntu Linux.

Figure 9. Replication Plan deployed.

An overview of the current replication status and total amount of commits, records added,

updated or deleted, can be activated from the Activity menu item of the pop-up menu of

the deployed plan, as shown in Figure 10, Replication Activity.

Figure 10. Replication Activity.

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 14 of 33

isCOBOL Compiler

The isCOBOL 2023 R1 compiler includes new compiler options to simplify the migration

from other COBOL dialects and ESQL pre-compilers. It also supports a new syntax to

declare a variable number of parameters in the program and class.

Improved Compatibility with other COBOLs

In this release the ON statement has been implemented to allow execution of statements

based on a counter that is implicitly defined for any ON statement. The counter is

initialized to zero and is automatically increased by one every time the ON statement is

executed. It is particularly useful to execute code depending on the number of CALLs

executed on a program or the PERFORMs executed on a paragraph without declaring data

items and manually manage the counter. For example, the following code snippet:

 perform my-paragraph 10 times.
 ...
 my-paragraph.
 on 1 |"loop started first time"
 initialize w-data.
 ...
 on 2 and every 2 |"execute at ‘even’ times"
 move w-data to w-data-p
 else
 move w-data to w-data-e
 .

executes the initialize statement only the first time the paragraph “my-paragraph” is

executed and the move statement is done on different data items depending on the

execution being odd or even.

MicroFocus COBOL and IBM COBOL allow specifying an occurs data item without the

index after the data name, like the following code snippet:

77 w-flag pic 9 occurs 3.
 ...
 if w-flag = 1
 ...

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 15 of 33

Previous isCOBOL compilers would have marked the statement as a Severe Error:

--S: #41 Subscript required: W-FLAG

To improve compatibility, when compiling using options -cm (for MicroFocus

compatibility) or -cv (for IBM compatibility), the severe errors are now marked as managed

errors, as shown below:

--E: #299 Subscript required, first occurrence assumed: W-FLAG

causing the program to be compiled successfully, and assuming that the data name W-

FLAG is considered as W-FLAG(1).

New compiler options have been added in this release:

-csdb2 to activate the DB2 pre-compiler compatibility. With this option, all the

behaviors activated by previous configuration iscobol.compiler.esql.db2=true are applied,

for example the compiler generates specific code to return the result sets in the same

format that would be produced when using the IBM DB2 preprocessor. It supports the

SQLDA structure and the use of date, time and timestamp as function parameters, and it

allows you to intercept the result of a function or a special register with a SET statement.

-csora to activate the Oracle ProCobol compatibility. With this option, the Compiler

enables the SQLADR, SQLNUL and SQLPRC functions used by SQLDA feature for the JDBC

environment instead of the ProCobol native calls. An additional advantage of these new

compiler options related to ESQL is that they are integrated and taken into consideration

by the iscobol.runtime.compile_flags.mandatory or

iscobol.runtime.compile_flags.prohibited configurations set when running.

-dcv to use the VAX/COBOL numeric formats. These formats are identical to the IBM

formats, except that unsigned COMP-3 fields place X"0C" in the sign position, instead of

X"0F", useful when migrating data from VAX/COBOL or OpenVMS systems.

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 16 of 33

Improved Compatibility with IBM DB2 Preprocessor

Enhancements have been made in this release to improve compatibility with the IBM DB2

Preprocessor.

The new supported syntax includes:

- CONNECT RESET statement to close the connection with the database. Using this

statement CONNECT RESET can be used as synonym of DISCONNECT regardless of the

database you’re connected to.

- SQL TYPE in host variables declaration to map the host variable with a large object

field on the database. The new syntax supported by the compiler in USAGE is:
 01 Data-Item USAGE IS SQL TYPE IS { BLOB } [(Lob-Length)]
 { CBLOB }
 { DBCLOB }

The compiler internally transforms the host variables into a group data item where data

and length are stored in two separate sub-items, for example the following host variables:

01 MY-BLOB USAGE IS SQL TYPE IS BLOB(2M).

is translated to:

01 MY-BLOB.
 49 MY-BLOB-LENGTH PIC S9(9) COMP-5.
 49 MY-BLOB-DATA PIC X(2097152).

The following code snippet reads the content of a CLOB column and displays it:
 01 MY-CLOB USAGE SQL TYPE IS CLOB(1M).
 ...
 EXEC SQL
 SELECT TBL_CLOB INTO :MY-CLOB FROM TBL WHERE TBL_PK = 1
 END-EXEC
 DISPLAY MY-CLOB-DATA(1:MY-CLOB-LENGTH).

Although this syntax was implemented as compatibility with DB2, it can also work on

other JDBC-compliant databases, and the compiler accepts the syntax without the need to

set a specific option.

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 17 of 33

A new runtime configuration option has been added:

- iscobol.esql.db2.row_data_as_bytes_threshold. The DB2 Preprocessor allows

you to store any character in CHAR and VARCHAR fields, as you can do with a COBOL item

with picture X. Some COBOL applications take advantage of this possibility to store the

dump of COBOL structures with COMP fields into CHAR and VARCHAR fields. When

moving to Java JDBC, CHAR and VARCHAR fields are managed as strings and a conversion

error may occur if an unknown character is detected in the string. The database encoding

affects the management of the strings.

To address this problem, the isCOBOL runtime allows you to manage CHAR and VARCHAR

fields as byte arrays, allowing any character to be stored into such fields. To have all CHAR

and VARCHAR fields managed as byte arrays, it’s now possible to set:

iscobol.esql.db2.row_data_as_bytes_threshold=1

To have only specific CHAR and VARCHAR fields managed as byte arrays, set the property

to a value greater than 1. For example, by setting:

iscobol.esql.db2.row_data_as_bytes_threshold=100

CHAR and VARCHAR fields whose size is not less than 100 bytes will be managed as byte

arrays, while smaller CHAR and VARCHAR fields will be managed as strings.

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 18 of 33

Variable number of parameters

With previous releases, when a program-id or entry needed to be called with a variable

number of parameters, it was necessary to declare many linkage data items used in the

“procedure division using” statement and call the C$NARG library routine to find out the

number of parameters passed from the caller program. In addition, in cases of method-id

declared in a class-id, the variable number of parameters was not supported.

Starting from 2023 R1 the syntax “…” written at the end of the object reference class

definition is supported to manage a variable number of arguments in all scenarios

(program-id, entry, method-id). The syntax is the same as pure Java, where the “…” is used

to create a method with a variable number of arguments (known also as a Varargs

method). This is shown in the following code snippet:

 public static void doDisplay (String... params){
 System.out.println("Number of arguments received: " + params.length);
 for(String s:params){
 System.out.println(s);
 }
 }

The same result can be achieved in the class-id Cobol source using the following syntax:

 method-id. doDisplay as "doDisplay".
 working-storage section.
 77 npar pic 9(3).
 77 idx pic 9(3).
 linkage section.
 77 params object reference "java.lang.String...".
 procedure division using params.
 main.
 set npar to params:>length.
 display "Number of arguments received: " npar.
 perform varying idx from 0 by 1 until idx = npar
 display params(idx)
 end-perform
 end method.

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 19 of 33

The calling programs that need to invoke this method can pass a variable number of

parameters as shown in the following code snippet:

 repository.
 class tclassid as "tclassid"
 .
 working-storage section.
 77 obj object reference tclassid.
 procedure division.
 set obj to tclassid:>new().
 obj:>doDisplay(var1).
 obj:>doDisplay(var1, var2).
 obj:>doDisplay(var1, var2, "string").

The same applies for a program-id Cobol source. To specify a variable number of pic X

data items instead of java.lang.String, declare the isCOBOL class type as shown in this code

snippet:

 program-id. tprogid.
 working-storage section.
 77 npar pic 9(3).
 77 idx pic 9(3).
 linkage section.
 77 params object reference "com.iscobol.types.PicX...".
 procedure division using params.
 main.
 set npar to params:>length.
 display "Number of arguments received: " npar.
 perform varying idx from 0 by 1 until idx = npar
 display params(idx)
 end-perform
 goback.

The caller program can pass a variable number of parameters in the CALL statement as

shown in the following code snippet:

 working-storage section.
 77 var1 pic x(10).
 77 var2 pic x any length.
 procedure division.
 call "tprogid" using var1
 call "tprogid" using var1, var2
 call "tprogid" using var1, var2, "string"

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 20 of 33

IsCOBOL Runtime

The isCOBOL runtime 2023 R1 includes a new file handler named VisionJ to access Vision

files without the need for native code. It also supports new library routines and improved

existing routines and configurations.

New file handler VisionJ

A new value is supported for iscobol.file.index to fully access Vision file formats from

versions 3 to 6, with the exception of encrypted files, without the need to create the Vision

File Connector based on native code. The short alias name is VisionJ, while the full class

name that needs to be used in CLASS clause of SELECT of the file definition is

com.iscobol.io.DynamicVisionJ. This file handler manages locks in conjunction with

ACUCOBOL-GT runtime, making it a good solution for mixed production sites where there

are still ACUCOBOL-GT applications running. The approach is similar to the Vision File

Connector but with higher performance since there is no need of pipe communication

between processes.

As shown Figure 11, Comparing VisionJ vs Vfc, performance comparison was made using

the IO-INDEXED program provided in the sample/io-performace folder to test 100,000

records managed by new the VisionJ file handle and the existing Vision file connector,

known also as VFC. The test was run on Windows 11 Pro 64-bit with i7-8550U CPU @

1.80GHz and 16 GB of RAM and on Linux Fedora 37 64-bit with i7-9750H CPU @ 2.60Ghz ×

12 and 32 GB of RAM.

Figure 11. Comparing VisionJ vs Vfc.

These tests show that the new VisionJ handler is faster in all operations and especially in

the READ access, where the improvement is more than 50%. The new file handler is also

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 21 of 33

integrated in all Veryant products, including the isCOBOL File Server and isCOBOL UDBC

driver as well as isCOBOL utilities such as GIFE and ISMIGRATE. Specific configurations can

be set with the prefix iscobol.visionj. For example, to create Vision files version four, set

iscobol.visionj.v_version=4.

New and improved library routines and configurations

New library routines have been implemented to improve compatibility with the

MicroFocus dialect, such as:

CBL_GET_KBD_STATUS to know if there are characters available from the keyboard

CBL_READ_KBD_CHAR to retrieve the character that was typed, in ASCII

CBL_THREAD_SLEEP to sleep the given number of milliseconds

The following code snippet shows the syntax and how to use these new library routines:

 77 key-status pic x comp-x.
 77 wcharacter pic x.
 ...
 perform until wcharacter = x"1B" |ESC
 call "CBL_GET_KBD_STATUS" using key-status
 if key-status = 1
 call "CBL_READ_KBD_CHAR" using wcharacter
 ...
 call "CBL_THREAD_SLEEP" using 5
 end-if
 end-perform

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 22 of 33

To simplify the string conversion from one encoding to another a new routine named

C$STRING_CONVERT is now available. This is used in multiple instances; for example to

prepare data to be passed to a web service or to convert data received from a third-party

application in the charset used by the isCOBOL application. The following code snippet

shows how to convert the Euro sign from Windows Cp1252 charset where the character is

stored by 1 byte x”80” into UTF-8 charset where the same character is stored in 3 bytes

x”E282AC”:

 77 w-string pic x(10).
 77 w-string-utf8 pic x(10).
 ...
 initialize w-string-utf8
 move "€" to w-string
 call "C$STRING_CONVERT" using w-string
 w-string-utf8
 "Cp1252"
 "UTF-8"

Library routines that refer to file names in parameters now support the use of pic N instead

of pic X to correctly manage the files whose name includes characters that are not

supported by the current encoding. For example, the following code snippet allows you to

correctly retrieve the file name with Chinese characters even if the application is running

on a Windows Latin-1 platform where the default encoding is CP1252:

 copy "isopensave.def" replacing ==pic x== by ==pic n==.
 77 file-name pic n(256).
 01 file-info.
 03 file-size pic x(8) comp-x.
 03 file-date pic 9(8) comp-x.
 03 file-time pic 9(8) comp-x.
 77 ret-code pic s9.
 ...
 initialize opensave-data
 call "C$OPENSAVEBOX" using opensave-open-box
 opensave-data
 giving ret-code
 if ret-code = 1
 move opnsav-filename to file-name
 call "C$FILEINFO" using file-name
 file-info
 giving ret-code
 ...
 end-if

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 23 of 33

In general, these library routines allow you to pass both pic X or pic N fields when the

parameter is elementary, like the first parameter of C$FILEINFO. In cases where a

parameter is a structure 01 level included in a .def copy file, like the opensave-data for

C$OPENSAVEBOX, it’s necessary to use the copy replacing syntax to ensure that the child

levels in the structure defined in the copy file will also use a pic N syntax.

The W$KEYBUF routine has been enhanced to support the Alt+letter/num combination

key using {@?} syntax to pass a value from @A to @Z for letters or from @0 to @9 for

numbers. For example, the following code snippet sends Alt+5 key to the next accept:

 copy "iscobol.def".
 77 w-comb-key pic x(4).
 ...
 move "{@5}" to w-comb-key
 call "W$KEYBUF" using wkbuf-add-to-end, w-comb-key

These are the new supported configurations options:

 iscobol.ctree.bound_library to set the library name to be loaded in bound_server

mode, when iscobol.ctree.bound_server=true is set. It has a default value of “ctdbsapp”,

the correct value for c-treeRTG version 3.0.2.668 released with 2023R1. In previous

versions of ctree the library was named “ctreedbs”. Set this configuration variable to

“ctreedbs” if you wish to start an older c-tree version in bound mode.

 iscobol.gui.implied_decimal to have the implied_decimal feature on both

character accept and graphical entry-fields. When set to true, if no decimal separator is

specified by the user, a decimal separator is automatically applied by the Runtime

according to the picture of the data-item bound to the input field.

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 24 of 33

GUI enhancements

Improvements to GUI controls have been implemented in this release, especially in the

tree-view control and window container to optimize screen refresh.

Enhancements on tree-view

The tree-view control now supports the VPADDING property to affect the height of the

items, indicating extra vertical space to be applied to each item. The value of this property

is expressed as a percentage of the control’s font, like in the grid control. This property is

supported by both the standard tree-view without columns and the Table-View with

columns.

In the tree-view with Table-View style, the ability to display icons in the different columns

through the BITMAP-NUMBER and BITMAP-TRAILING properties in the column identified

by the X property is now supported.

The following code snippet:

 03 tree-table tree-view table-view
 bitmap-handle hBmpAC
 bitmap-width 16
 ...
 vpadding 50
 ...
 modify tree-table parent tv-item-parent item-to-add rec-grid
 giving tv-item-child has-children 1
 x 1 bitmap-number wrk-num-bmp bitmap-trailing 1
 modify tree-table parent tv-item-child item-to-add rec-grid
 giving tv-item has-children 0
 x 1 bitmap-number 0
 x 3 bitmap-number wrk-num-bmp-2

declares a tree-view control with table-view style and a bitmap strip during the loading.

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 25 of 33

Different icons are set on different items. Icons are set on the first column after the text

and on the third column before the text since bitmap-trailing is not set, resulting in the

default value 0 to be used. The result of the code is shown in Figure 12, Table-View with

icons.

Figure 12. Table-View with icons.

Window optimization

Typical graphical applications display complex forms, potentially containing hundreds of

controls. Such applications can suffer for sub-optimal screen refresh performance,

depending of the performed operation or implementation details.

Potential problematic areas include, for example, windows composed of multiple screens,

windows where individual controls are created dynamically using DISPLAY statements,

and windows that are destroyed and then re-created, causing content such as menu bar,

tool-bar and ribbon controls to be recreated.

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 26 of 33

In these situations, depending on the device and monitor refresh performance, or network

speed when running in ThinClient or WebClient, a screen refresh could be aesthetically

unappealing and perform poorly.

To avoid this, the MASS-UPDATE property, already supported on controls such as grid,

tree-view, list-box and combo-box, can be applied to a window to group multiple user

interface updates in a single refresh. Just set MASS-UPDATE to 1 before a large UI refresh

and set again MASS-UPDATE to 0 when the all updates are completed. All the changes are

applied instantly, resulting in higher performance and a smoother and more pleasing user

experience.

MASS-UPDATE on controls should still be used to ensure best performance.

The following code snippet take advantage of the new implementation:

 modify hWin mass-update 1
 destroy Mask
 perform DESTROY-MENU
 perform DESTROY-TOOLBAR
 perform SHOW-MENU
 perform DISPLAY-TOOLBAR
 display Mask
 perform until ...
 ...
 display entry-field handle ef-handle(idx)
 line w-d-line col w-d-col size 3 cells
 end-perform
 modify pb-add-control enabled e-pb-add-control
 modify pb-modify-control enabled e-pb-modify-control
 modify pb-destroy-control enabled e-pb-destroy-control
 modify hWin mass-update 0

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 27 of 33

The result of the code is shown in Figure 13, Mass-update on window. When debugging the

program, it’s possible to note that after stepping on the “modify hWin mass-update 1”, all

the statements that affect controls do not refresh the screen, and only after executing

“modify hWin mass-update 0” the screen is fully refreshed.

Figure 13. Mass-update on window.

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 28 of 33

isCOBOL EIS

isCOBOL EIS, Veryant’s solution to write web-enabled COBOL programs, is constantly

updated to provide more comprehensive web solutions. As of version isCOBOL 2023 R1,

the HTTPClient class can set a Proxy server to be used when performing network activity,

and a new specific log file has been implemented to log the activity.

HTTPClient class

HTTPClient is a class that enables COBOL programs to interact with Web Services and HTTP

Servers. This class has been updated with this new method signature:

public void setProxy (String Ip, Int Port)

After invoking this method, the specified proxy server is used for all the following requests

performed by the HTTPClient instance.

New configurations have been implemented to trace the HTTPClient activity:

 iscobol.httpclient.logging=true to enable logging

iscobol.httpclient.logfile=/path/to/logfile to specify the log pathname

The log includes the request date and time, the request content, the response code, the

response headers and the response content. If the file already exists, the new content is

appended to it.

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 29 of 33

This is an example of the log content running the installed sample IP2GEO with the two new

configuration settings:

===============================
Connection requested at 2022-12-28 - 17:28:07.287
Connecting to: http://ws.cdyne.com/ip2geo/ip2geo.asmx
Request content:
<?xml version="1.0" encoding="UTF-8"?><soapenv:Envelope
xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope"
xmlns:tns="http://ws.cdyne.com/"><soapenv:Body><tns:ResolveIP><tns:ipAddress>209.
235.175.10</tns:ipAddress><tns:licenseKey/></tns:ResolveIP></soapenv:Body></soape
nv:Envelope>

Response code: 200
Response Headers:
HTTP/1.1 200 OK
Cache-Control:no-cache
Pragma:no-cache
Content-Type:application/soap+xml; charset=utf-8
Expires:-1
Server:Microsoft-IIS/10.0
X-AspNet-Version:4.0.30319
X-Powered-By:ASP.NET
Date:Wed, 28 Dec 2022 16:28:06 GMT
Content-Length:658
Response content:
<?xml version="1.0" encoding="utf-8"?><soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><soap:Body><ResolveIPResponse
xmlns="http://ws.cdyne.com/"><ResolveIPResult><City>Nashville</City><StateProvinc
e>TN</StateProvince><Country>United States</Country><Organization
/><Latitude>36.1114</Latitude><Longitude>-
86.869</Longitude><AreaCode>615</AreaCode><TimeZone
/><HasDaylightSavings>false</HasDaylightSavings><Certainty>90</Certainty><RegionN
ame
/><CountryCode>US</CountryCode></ResolveIPResult></ResolveIPResponse></soap:Body>
</soap:Envelope>
===============================
Connection requested at 2022-12-28 - 17:39:21.3921
Connecting to: http://ws.cdyne.com/ip2geo/ip2geo.asmx
Request content:
...

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 30 of 33

Additional improvements

isCOBOL 2023 R1 release improves the JUTIL and Stream2Wrk utilities.

JUTIL

JUTIL is the ISAM utility for indexed files in JISAM format. In this release, two existing

options have been enhanced providing additional parameters.

The -convert option supports two additional optional parameters:

-d to delete the intermediate files after converting

-s to strip the extension from the output file name

These options are useful to avoid double extensions in the migrated JISAM file, for

example when running the following command:

jutil -convert products.ext out-jisam -d -s

the MicroFocus indexed file named products.ext is converted to JISAM format. The JISAM

file is created in the out-jisam folder, the physical file name is products.dat and

products.idx, since the -s parameter has been passed. Without passing the -s parameter,

the physical file name is products.ext.dat and products.ext.idx. The extension .dat and .idx

are the defaults for JISAM, but they can be customized by configuring

iscobol.file.index.data_suffix and iscobol.file.index.index_suffix. Temporary files are

created in the user’s temporary directory unless the TMPDIR environment variable is set,

and are deleted after the conversion as a result of specifying the -d parameter.

The –rebuild option supports an additional optional parameter:

-efd=efdfile.xml to create a new idx file based on the xml information.

This is useful when the index file is corrupted in the header information or completely

missing, and to correctly rebuild the JISAM file it’s important to create first the appropriate

empty .idx file. This process is now transparent when passing the .xml file created by -efd

compiler option. For example, the following command:

jutil -rebuild products –efd=xml

will rebuild the JISAM file named products when only the .dat file is present, and the .idx is

missing. The .idx file will be created using the file info from products.xml file stored in the

xml folder.

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 31 of 33

Stream2Wrk

Stream2Wrk is a utility that developers can use to generate copy files containing the data

structures to be used in working-storage section when parsing a stream. In addition to the

supported wsdl, xml and json format, now it’s possible to parse a .xsd file directly, without

the need for an .xml file that implements the xsd structure. For example, the following

command:

stream2wrk xsd order.xsd

parses the order.xsd file and creates an order.wrk copybook.

The xsd option supports the same parameters as xml parsing:

[-o outputfile] to set a different output file

[-p prefix] to set a prefix to be used in the generated data-names

[-d] to activate the disambiguate rule in order to avoid ambiguous identifiers

In addition, new optional parameters have been implemented in both xml and xsd

parsing:

[-c] to generate 'count' data-items

[-e] to generate 88 level representing 'enumeration' tags

[-iu] to ignore unbounded, avoiding the generation of “occurs” when there is

'maxOccurs=unbounded'

[-l[=len]] to generate data-items with fixed size instead of 'pic x any length'

[-nc] to avoid the generation of commented lines

[-sa attribute-suffix] to specify the suffix for 'attribute' data-items

[-sc count-suffix] to specify the suffix for 'count' data-items

[-scp capacity-suffix] to specify the suffix for 'capacity' data-items when an “occurs

dynamic” is declared

[-sd data-suffix] to specify the suffix for 'data' data-items

[-se enumeration-suffix] to specify the suffix for enumeration data-items

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 32 of 33

These new options help COBOL developers to better customize the generated output, and

some of them are necessary if the generated copybook needs to be used in an XD file

definition, where pic x any length and occurs dynamic are not supported. Occurs dynamic

and pic x any length are still preferable when using the XMLStream class.

For example, parsing the following xsd file:

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://tempuri.org/PurchaseOrderSchema.xsd"
 targetNamespace="http://tempuri.org/PurchaseOrderSchema.xsd"
 elementFormDefault="qualified">
 <xsd:element name="PurchaseOrder" type="tns:PurchaseOrderType"/>
 <xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:element name="ShipTo" type="tns:USAddress" maxOccurs="2"/>
 </xsd:sequence>
 <xsd:attribute name="OrderDate" type="xsd:date"/>
 </xsd:complexType>
 <xsd:complexType name="USAddress">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:integer"/>
 <xsd:element name="priority">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="hign"/>
 <xsd:enumeration value="normal"/>
 <xsd:enumeration value="low"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>

isCOBOL Evolve 2023 R1 Overview

© Copyright 2023 Veryant. All rights reserved. Page 33 of 33

with the following command:

stream2wrk xsd order.xsd -o order1.wrk –p order- -d

the generated order1.wrk file will contain the following structure:

 01 order-PurchaseOrder identified by 'PurchaseOrder'
 namespace 'http://tempuri.org/PurchaseOrderSchema.xsd'.
 03 order-OrderDate-attr identified by 'OrderDate'
 is attribute pic x any length.
 03 order-ShipTo identified by 'ShipTo' occurs 2.
 05 order-name identified by 'name'.
 07 order-name-data pic x any length.
 05 order-state identified by 'state'.
 07 order-state-data pic x any length.
 05 order-zip identified by 'zip'.
 07 order-zip-data pic s9(18).
 05 order-priority identified by 'priority'.
 07 order-priority-data pic x any length.

while using the additional parameters with the following command:

stream2wrk xsd order.xsd -o order2.wrk –p order- –d -e -c -iu -l=80 -sd
-var -se -88

the generated order2.wrk file contains this structure:

 01 order-PurchaseOrder identified by 'PurchaseOrder'
 namespace 'http://tempuri.org/PurchaseOrderSchema.xsd'
 count in order-PurchaseOrder-count.
 03 order-OrderDate-attr identified by 'OrderDate'
 is attribute pic x(80) count in order-OrderDate-attr-count.
 03 order-ShipTo identified by 'ShipTo' occurs 2 count in order-ShipTo-count.
 05 order-name identified by 'name' count in order-name-count.
 07 order-name-var count in order-name-var-count pic x(80).
 05 order-state identified by 'state' count in order-state-count.
 07 order-state-var count in order-state-var-count pic x(80).
 05 order-zip identified by 'zip' count in order-zip-count.
 07 order-zip-var count in order-zip-var-count pic s9(18).
 05 order-priority identified by 'priority' count in order-priority-count.
 88 order-priority-88-0 value 'hign'.
 88 order-priority-88-1 value 'normal'.
 88 order-priority-88-2 value 'low'.
 07 order-priority-var count in order-priority-var-count pic x(80).

