

© 2024 Veryant. All rights reserved.

isCOBOLTM Evolve
isCOBOL Evolve 2024 Release 2 Overview

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 2 of 31

Copyright © 2024 Veryant LLC.

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and recompilation. No part of this product or document may be reproduced in
any form by any means without the prior written authorization of Veryant and its licensors if any.

Veryant and isCOBOL are trademarks or registered trademarks of Veryant LLC in the U.S. and other
countries. All other marks are the property of their respective owners.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 3 of 31

isCOBOL Evolve 2024 Release 2 Overview

Introduction

Veryant is pleased to announce the latest release of isCOBOL Evolve, isCOBOL Evolve 2024

R2.

isCOBOL Evolve provides a complete environment for the development, deployment,

maintenance, and modernization of COBOL applications.

The new incremental compiler feature is available to speed up compilations for projects

that contain a large number of source files. The compiler supports syntax for Boolean and

USAGE-BIT.

The updated isCOBOL Debugger can now fully access the variables of programs in the

stack.

isCOBOL Evolve 2024 R2 introduces a new GUI control named CHIPS-BOX as well as other

graphical enhancements.

Details on these enhancements and updates are included below.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 4 of 31

IsCOBOL Compiler

IsCOBOL Compiler 2024 R2 supports incremental compilation through new options as well

as implementing COBOL Boolean and USAGE BIT syntax. It also improves the OOP (Object

Oriented Programming) syntax by allowing the VALUE clause in object reference data

items.

Incremental compilation

The Incremental Compiler is a compilation strategy in which only programs with modified

text, COPY files, or INCLUDE files get recompiled. The changes will be merged with

previously compiled code to form new Java code. When you compile your entire source

code base using this new feature, the incremental compiler will result in a faster

compilation step. The main advantage of this strategy is the performance boost with

massive compilations; for example, when using CI (Continuous Integration) tools where

source code in often recompiled to keep classes up to date with changes made in source

code during development. Until the previous release a complete recompilation was done

running a command such as:

iscc -options *.cbl

To enable the incremental compilation, use the new -incr option passing the value “build”,

such as:

iscc -options -incr=build *.cbl

The build operation uses the incr.iscc file contained in the current folder to check if a

source file needs to be recompiled because of a change after the last successful

compilation. The compiler checks the timestamp of the source file and compares it to the

timestamp of the .class file.

The incr.iscc file name and location can be customized by passing an alternative

pathname after the build and clean options with a semicolon separator, for example:

iscc -options -incr=build;..\resources\CompInfo folder1*.cbl

uses CompInfo from ..\resources instead of incr.iscc from the current directory.

Only one alternative pathname can be supplied.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 5 of 31

The use of a customized pathname allows you also to reuse the same file for different

compilations, such as

cd source1

iscc -options -incr=build;..\resources\CompInfo folder1*.cbl

cd ..\source2

iscc -options -incr=build;..\resources\CompInfo folder2*.cbl

To force full recompilation, the clean parameter can be passed to the -incr option, for

example:

iscc -options -incr=clean,build *.cbl

The values passed to the -incr option are equivalent to the isCOBOL IDE Eclipse plugin,

where you have the options to build the project or clean and then build. Now this feature

is also available to developers. If you prefer to use a command-line approach and batch

compilation typical for massive build operations, you can now take use incremental

compilation.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 6 of 31

COBOL Boolean and USAGE BIT support

A new type of PICTURE named 1 is supported to manage Boolean data items. Boolean

variables are typically used for flag or a list of flags data items that can be set to true or

false and then used in conditions in the program logic. To simplify migration of numeric

variables to Boolean variables, two new functions are supported.

- INTEGER-OF-BOOLEAN to convert an integer value to a Boolean value

- BOOLEAN-OF-INTEGER to convert a Boolean value to an integer value

The PICTURE 1 also supports the USAGE BIT clause to manage the variable with bit series.

This is an example on using the Boolean data type:
 ...
 01 bit-item PIC 1(8) USAGE BIT.
 01 num-item PIC 9(5).

01 num-item-2 PIC 9(5).
 ...
 MOVE 123 to num-item
 MOVE FUNCTION BOOLEAN-OF-INTEGER(num-item, 8) TO bit-item.
 display bit-item | this shows 01111011
 if bit-item(1:1) | this is false
 display "bit 1 is true"
 else
 display "bit 1 is false"
 end-if
 if bit-item(2:1) | this is true
 display "bit 2 is true"
 else
 display "bit 2 is false"
 end-if
 ...
 COMPUTE num-item-2 = FUNCTION INTEGER-OF-BOOLEAN (bit-item).
 display num-item-2 | this shows 123

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 7 of 31

Additional compiler options:

The additional compiler options implemented in this release are: -brand and -csqq2.

The -brand="value" option stores custom information in the class. This feature is useful

when a piece of information needs to be stored in the .class file at compile time and can

then be accessed by the running code.

For example, a code snippet like:
 move function compiled-info() to w-compinfo
 initialize w-count
 inspect w-compinfo tallying w-count for all "-brand="
 if w-count = 0
 display "Program compiled without -brand option"
 else
 inspect w-compinfo tallying w-count for characters before "-brand="
 add 7 to w-count
 move w-compinfo(w-count:4) to w-myvers convert
 end-if
 if w-myvers > 132
 call "newprog" using w-params
 end-if

will execute the CALL “newprog” only if the value passed to the -brand option is > 133,

making the execution dependent on how the program has been compiled. Compiling

with these commands:

iscc -brand=132 MYPROG.cbl

or:

iscc -brand=133 MYPROG.cbl

makes the difference. To check for the brand information in a class, run the following

command:

iscrun -info MYPROG

This will return the information that has been stored along with all other compiler options:
 ...
 Compile flags: -g -oe -brand=133 -b -cghv
 ...

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 8 of 31

The preprocessor can also get this information by using the configuration

iscobol.compiler.custompreproc. This will allow for different preprocessing logic to be

applied depending on the value set with the -brand option.

The -csqq2 option is used to switch double and single quotes in ESQL code. This option is

useful in sources where the quotes have not been written in the ESQL standard ruleset. By

default, double quotes are used for identifiers and single quotes are used for

alphanumeric values. But in cases where the sources contain the opposite situation, for

example:
 EXEC SQL
 INSERT INTO 'MixedCase' ('CharCol', 'NumCol') VALUES ("abc", 1)
 END-EXEC

Compiling with the new -csqq2 option will treat the code as:
 EXEC SQL
 INSERT INTO "MixedCase" ("CharCol", "NumCol") VALUES ('abc', 1)
 END-EXEC

The SQL code will be executed correctly and the standards for JDBC drivers.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 9 of 31

VALUE clause in object reference

The VALUE clause is used in working-storage data items to initialize a value at the

beginning of the program. Starting from 2024 R2, the VALUE clause is also supported for

object reference, allowing initialization at program startup for this kind of data as well.

Code like the following:

 repository.
 class jstring as "java.lang.String"
 class jint as "java.lang.Integer"
 ...
 77 j1 object reference jstring value jstring::new("Value1").
 77 j2 object reference jstring value "Value2".
 77 jint1 object reference jint value jint:>new(123).
 77 jint2 object reference jint value 456.

Will instantiate the 4 objects already with the provided values. Basically, it is the same as

executing the following SET statements at the beginning of the procedure division:

 set j1 = jstring::new("Value1")
 set j2 = "Value2"
 set jint1 = jint:>new(123)
 set jint2 = 456

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 10 of 31

IsCOBOL Debugger

isCOBOL Debugger 2024 R2 supports full access to data items of programs and classes in

the stack, granting complete control for developers. 2024R2 also introduces other

enhancements to Perform stack view and Breakpoints.

Access to data items in the stack

During the execution of application using the debugger it’s typical to access data items of

the current program to show or change the values. However sometimes it’s also necessary

and useful for developers to access the values of data items defined in previous programs.

For example, it can be useful to inspect variables in a caller program to check how

parameters passed to the called program were assigned. Starting from 2024R2, isCOBOL

Debugger supports access to data items contained in programs and classes in the stack.

By double clicking on the needed line in the Perform stack view, as shown in Figure 1,

Open a program from the Stack, the corresponding source code is loaded, and all the

commands related to the data items are supported. When opening the dialogs related to

data items, the new field Method/Program is already set to the appropriate source file

name, as shown in Figure 2, Quick Watch with Program set.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 11 of 31

Figure 1. Open a program from the Stack

Figure 2. Quick Watch with Program set.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 12 of 31

In addition to the “Quick Watch” dialog all other dialogs that contain the “Variable name”

field, such as “Display variable”, “Modify variable”, “Display offset of variable”, “Display

length of variable” and “Set monitor” have this new “Method/Program” field enabling

developers to use this feature without the need to reload the previous source. This is

useful when developers can specify names of the data items in previous programs directly.

The commands used in the Debugger command-line now have the option -c to specify

the class name where the data item is declared, for example:

 dis -c ISCONTROLSET current-page
 let -c ISCONTROLSET current-page = 1

or, in case of CLASS-ID sources:

 dis -c MyClass:>MyMethod myvar
 let -c MyClass:>MyMethod myvar = abc

These commands will display and modify the values of the current-page variable in

ISCONTROLSET program and the myvar variable in the MyMethod of MyClass.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 13 of 31

Perform stack and Breakpoints

The Perform stack view and the output produced by the “infostack” command has been

enhanced when using methods and entry-points. To better identify the current method or

entry-point name in the Perform stack view, the syntax “of” has been added in the

“Program” column. This is similar to the name of paragraphs shown in the Paragraph

column when there are section names as well. For example:

- “LOAD of SECT1” in the Paragraph means “LOAD” paragraph in “SECT1” Section

- “LOADLIB of MYLIB” in the Program means “LOADLIB” entry-point in “MYLIB” Program-id

- “setDate of MyClass” in the Program means “setDate” method in “MyClass” Class-id

As shown in Figure 3, Enhancements to Breakpoints, the output of the “infostack” command

has also been improved with the same “of” syntax.

Figure 3. Enhancements to Breakpoints

In addition, breakpoints set on “program”, “method” and “paragraph” level are maintained

between different Debugger sessions also in case that the number of lines in the source is

changed.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 14 of 31

Graphical interface

isCOBOL 2024 R2 introduces a new control named CHIPS-BOX, a container that shows a list

of chips in a box. Additional enhancements involve W$BITMAP and configurations to let

developers customize and centralize window creation and control events.

CHIPS-BOX

The chips-box is typically used in web environments to let users pick a set of values from a

predefined list, or to add new values not in the list. One of the most common uses of chips

boxes is “tagging”, where the user can pick existing tags or make up new ones.

In the 2024 R2 release isCOBOL implements this new control, using the syntax shown

below:
 SCREEN SECTION.
 ...
 03 chips chips-box chips-type 2 chips-radius radius-factor
 line 8 col 2 size 68 lines 10
 event CHIP-EVT.
 ...
 PROCEDURE DIVISION.
 ...
 modify chips item-to-add item-text
 bitmap image-handle(idx)
 bitmap-number 1 bitmap-width 78-bmp-width
 item-foreground-color 78-chip-color-1
 item-background-color 78-chip-color-2
 item-border-color -946895
 item-rollover-background-color -14019325
 item-rollover-foreground-color -678063
 item-rollover-border-color -678063
 hidden-data hidden-chip
 giving item-id

The snippet declares a chip box element in the screen section, and in the procedure

division the MODIFY statement adds a new chip with a leading bitmap.

The container can be customized using the following properties:

- CHIPS-TYPE can be set to 1 for chips that include just text and an optional leading

bitmap, or 2 for chips that include text, an optional leading bitmap and a trailing x icon

that the user can click to remove the chip.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 15 of 31

- CHIPS-RADIUS to set the percentage of the rounded borders, from 0 to have sharp

borders to 100 to have circular borders.

- CHIPS-BORDER-WIDTH to set the width of the chips’ borders.

- CHIPS-ROLLOVER-BORDER-WIDTH to set the width of the chips’ borders when the

mouse is over the chip.

Colors can be set on the chips themselves, or can be set as default on the container using

the specific properties:

- ITEM-COLOR, ITEM-FOREGROUND-COLOR and ITEM-BACKGROUND-COLOR to set the

color of the chip.

- ITEM-BORDER-COLOR to set the border color of the chip.

- ITEM-ROLLOVER-COLOR, ITEM-ROLLOVER-BACKGROUND-COLOR and ITEM-

ROLLOVER-FOREGROUND-COLOR to set the color of the chip when the mouse is over

the chip.

- ITEM-ROLLOVER-BORDER-COLOR to set the border color of the chip when the mouse

is over the chip.

The result of running the program is shown in Figure 4, New CHIPS-BOX control, and the

user is selecting the second chip, which is then painted using the rollover colors set.

Figure 4. New CHIPS-BOX control.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 16 of 31

When the user clicks on the chip, the CMD-CLICKED event is fired, and when the X icon is

clicked, the MSG-CLOSE event is fired. Developers can implement code to react to such

events.

W$BITMAP

The new WBITMAP-TEXT-BOX opcode has been implemented in the W$BITMAP routine to

generate images from text. The typical usage scenario is to display an avatar for a user

account: if a user does not have an image selected for the account, an image is shown

with the user’s initials.

This feature is also used in the previous program for CHIPS where the leading bitmap is

created dynamically by the program.

This code snippet:
 initialize wbitmap-tb-data
 set wbitmap-tb-circle to true
 move h-font to wbitmap-tb-font
 move p-size to wbitmap-tb-width
 move wrk-text-color to wbitmap-tb-text-color
 move wrk-back-color to wbitmap-tb-bg-color
 move wrk-grad-color to wbitmap-tb-bg-color-2
 move gradient-north-to-south to wbitmap-tb-grd-or
 move "ISC" to p-text
 call "w$bitmap" using wbitmap-text-box
 p-text
 wbitmap-tb-data
 giving h-image-icon

can be used to create an image with the text and color settings passed in the structure

wbitmap-tb-data, and the resulting bitmap handle h-image-icon can be used in any

control that supports a bitmap handle.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 17 of 31

The results of the program in execution are shown in Figure 5, W$BITMAP wbitmap-text-

box op-code, where the text “ISC” is represented in the circle image.

Figure 5. W$BITMAP wbitmap-text-box opcode.

Other GUI enhancements

The entry-field proposal feature has been enhanced by adding a new PROPOSAL-FILTER-

TYPE property that can be used to customize filtering of the proposal list of Entry-Field,

and the possible values can be:

0: no filtering is performed, and the list is always shown entirely

1: filters with a case insensitive "contains" logic

2: filters with a case insensitive "starts with" logic

In addition, the text that matches is highlighted in the list. The following is a code snippet

that shows usage the new property:

 03 ef-state entry-field value w-state
 line 5, col 20, size 20 cells
 proposal-filter-type 1.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 18 of 31

In Figure 6, PROPOSAL-FILTER-TYPE on entry-field, shows the results when running with

filtering in progress.

Figure 6. PROPOSAL-FILTER-TYPE on entry-field.

The window supports a new WINDOW-STATE property that can be used in the INQUIRE

statement to detect the state of the window, allowing the code to check if the window is

minimized or maximized, as shown in this snippet of code:
 inquire h-win window-state wstate
 evaluate wstate
 when win-normal ...
 when win-iconified ...
 when win-maximized-both ...
 end-evaluate

The event-data-1 and event-data-2 data items returned in the MSG-MOUSE-ENTER event

fired for controls like grids, list-box and tree-view when the NOTIFY-MOUSE style is set

now contain more detailed information. For example, in a grid the cell coordinates are

included, and in a tree-view the mouse coordinates are included.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 19 of 31

New configurations have been implemented to customize GUI control behavior:

- iscobol.gui.window.hook assigns a class to customize the DISPLAY WINDOW behavior.

The class needs to implement the isCOBOL interface

”com.iscobol.rts.WindowCreateHandler”. Developers can inquire and modify

attributes before or after window creation.

The following is a code snipped of the class-id source:
 IDENTIFICATION DIVISION.
 CLASS-ID. WCWINHANDLER AS "WCWINHANDLER" IMPLEMENTS WINCREATEHANDLER.
 ...
 CLASS WINATTRIBUTEHOOK AS "com.iscobol.gui.server.WindowAttributeHook"
 CLASS WINCREATEOVEXC AS "com.iscobol.rts.WindowCreateOverflowException"
 CLASS WINCREATEHANDLER AS "com.iscobol.rts.WindowCreateHandler"
 ...
 METHOD-ID. IS-WINDOWCREATE AS "beforeWindowCreate" override.
 ...
 LINKAGE SECTION.
 77 MyWinAttribute OBJECT REFERENCE WINATTRIBUTEHOOK.
 procedure division using MyWinAttribute raising WINCREATEHANDLER.
 if env-code = runenv-web-client
 set win-type to MyWinAttribute:>getType
 if win-type = "INDEPENDENT"
 MyWinAttribute:>setBackground(-16054009)
 MyWinAttribute:>setUndecorate(true)
 end-if
 end-if
 ...
 METHOD-ID. IS-AFTERWINDOWCREATE AS "afterWindowCreate" override.
 ...
 LINKAGE SECTION.
 77 myWinhandler OBJECT REFERENCE WINCREATEHANDLER.
 procedure division using myWinhandler raising WINCREATEHANDLER.
 ...

When running using the configuration:

iscobol.gui.window.hook=WCWINHANDLER

the class is invoked for every window created. If the window type is INDEPENDENT

and the runtime environment is WebClient then the window is colored differently and

set to UNDECORATE. This feature allows extensive control to windows. For example, a

hook program can be used to customize the appearance of an application depending

on the environment the program is run on.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 20 of 31

- iscobol.gui.matching_text_color specifies a matching color in entry-field, list-box and

grid controls. When running using the configuration:

iscobol.gui.matching_text_color=-10079487,-14675438

the selected text in the entry-field proposal and in the search result of list-box and grid

controls is painted using the provided combination of RGB colors as

background/foreground text color.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 21 of 31

- iscobol.hot_event.<program-name>=<event-type(s)> provides a custom handler for

specific GUI events. The program-name is a program-id that receives an event-status

structure as parameter in linkage section.

For example, a program like this:
 program-id. EFXICON.
 working-storage section.
 copy "iscontrols.def".
 77 w-class pic 99.
 linkage section.
 copy "iscrt.def".
 procedure division using event-status.
 MAIN.
 inquire event-control-handle class in w-class
 if w-class = ctl-entry-field
 if event-data-1 = 2 | click on the trailing bitmap (Xmark)
 modify event-control-handle value ""
 end-if
 end-if
 goback 0.

with the configuration set using:

 iscobol.hot_event.EFXICON=16400

will enable a developer to centrally manage the events msg-bitmap-clicked for the

entire application.

The program EFXICON will be executed and it will manage the event with specific

code just for clicking on trailing bitmaps in entry-field controls.

This solution can be easily adopted when using code injection. For example to activate

the X icon as a trailing bitmap in all entry-fields, just compile with this configuration:
 iscobol.compiler.gui.entry_field.defaults=bitmap-handle h-tools \
 bitmap-trailing-number 78-nb-xmark \
 bitmap-width 78-tb-bmp-width \
 event evt-ef-empty

This approach of centralized handling is similar to what can be achieved using the

configuration iscobol.hot_key.PROGNAME=n to manage the function keys or any

exception value.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 22 of 31

Database Bridge enhancements

isCOBOL Database Bridge is the tool that enables COBOL programs to interact with a

RDBMS without changing COBOL source code or learning ESQL. It has been enhanced to

optimize interactions with Microsoft SQL Server.

The compiler property iscobol.compiler.easydb.light_cursor can now be used along with

iscobol.compiler.easydb.sqlserver as follows:

iscobol.compiler.easydb=true

iscobol.compiler.easydb.sqlserver=true

iscobol.compiler.easydb.light_cursors=2

EDBI routines generated with this configuration retrieve n records at a time instead of

retrieving the whole resultset at once. The size of the block of received records is

controlled by the runtime configuration property iscobol.easydb.sqlserver.row_limit,

whose default value is 100. It can be changed dynamically by SET ENVIRONMENT

statement just before executing START file I/O statement.

Reading records with this logic reduces the workload on the database and improves

performance when there are several runtime sessions working on the database.

The difference between light_cursor set to 1 instead of 2 is to use the pagination logic only

when using UNIQUE indexes.

For developers that prefer to generate EDBI routines with the legacy two-steps approach

by processing the EFD dictionaries with the edbiis command, these new edbiis options are

now available:

-dslu (equivalent of iscobol.compiler.easydb.light_cursors=1)

-dsld (equivalent of iscobol.compiler.easydb.light_cursors=2)

For example, the command to be used for the legacy approach is:

edbiis -dsld FileName.xml

At runtime the application can improve performance by lowering the number of returned

rows in the result set, example by setting:

iscobol.easydb.sqlserver.row_limit=50

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 23 of 31

Compatibility enhancements

isCOBOL 2024 R2 release improves the compatibility with other COBOL dialects such as

ACUCOBOL-GT© and RM/COBOL©. Additionally, the ESQL syntax has been enhanced to

improve the compatibility with DB2 Preprocessor.

COBOL compatibility

New library routines have been added:

- The P$SETBOXSHADE routine, implemented for RM compatibility, sets the color and

density to be used by P$DRAWBOX. This is useful for graphical print output for

customers that use the CALL P$* series of routines. The following code snippet shows

the usage of the new routine:
 CALL "P$SETBOXSHADE" USING "Black", 10
 CALL "P$DRAWBOX" USING 2.5, 3.0, "Absolute", "Inches", .25, .25,
 "Inches", "No".
 CALL "P$SETBOXSHADE" USING "Red", 20
 CALL "P$DRAWBOX" USING 3.5, 3.0, "Absolute", "Inches", .25, .25,
 "Inches", "Yes".

to create 2 boxes; the first is black and not filled, the second is red with low intensity

and filled inside.

- The C$REGEXP routine, implemented for ACU compatibility, is used to search strings

using regular expressions. Though using isCOBOL’s OOP syntax to use java.util.regex.*

is more powerful, the new routine makes it easier to port code as-is when migrating

from ACUCOBOL-GT Extend code. The routine has different op-codes to compile a

regexp, check for matches in a string, or for every group when performing group

checks. If an error occurs detailed information is available using the CREGEXP-LAST-

ERROR opcode and the memory allocated for handles can be released using the

CREGEXP-RELEASE-MATCH and CREGEXP-RELEASE op-codes.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 24 of 31

This is a code snippet of the new routine:
 ...
 77 ret-regexp pic s99.
 77 w-string pic x(50).
 77 reg-expr pic x(50).
 77 h-regexp handle.
 77 h-result handle.
 ...
 CALL "C$REGEXP" USING CREGEXP-GET-LEVEL GIVING ret-regexp
 move "This is a big house with garden" to w-string
 string "(big)\s+(house)" x"00" delimited by size into reg-expr
 CALL "C$REGEXP" USING CREGEXP-COMPILE, reg-expr
 GIVING h-regexp
 if h-regexp not = null
 move 0 to w-length, match-start, match-end
 CALL "C$REGEXP" USING CREGEXP-MATCH, h-regexp, w-string,
 w-length, match-start, match-end
 GIVING h-result
 if h-result = 0
 CALL "C$REGEXP" USING CREGEXP-LAST-ERROR GIVING ret-regexp
 else
 compute w-bytes = match-end - match-start
 display "found:" w-string(match-start:w-bytes)
 end-if
 CALL "C$REGEXP" USING CREGEXP-NUMGROUPS h-result
 GIVING ret-regexp
 move ret-regexp to num-groups
 perform varying w-group from 1 by 1 until w-group > num-groups
 CALL "C$REGEXP" USING CREGEXP-GETMATCH, h-result,
 w-group, idx-start, idx-end
 GIVING ret-regexp
 ...
 end-perform
 end-if
 CALL "C$REGEXP" USING CREGEXP-RELEASE-MATCH h-result
 CALL "C$REGEXP" USING CREGEXP-RELEASE h-regexp
 ...

that shows how to use the different op-codes to perform searches.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 25 of 31

ESQL compatibility

IsCOBOL 2024 R2 contains many enhancements in ESQL. It’s now possible to use group

data items as parameter of an IN clause. In addition, the compatibility with the IBM DB2

syntax when compiling using the -csdb2 compiler option has been improved with the

support of VALUES INTO and DECLARE VARIABLE statements.

When executing the sql statement
 EXEC SQL
 SELECT field-list FROM table-name
 WHERE field IN (value1, value2, ..., valueN)
 END-EXEC

in versions up to 2024 R1, you had to use separate host variables for value1, value2 and

valueN, e.g.
 01 wk-value1 pic x(n).
 01 wk-value2 pic x(n).
 01 wk-value3 pic x(n).

Starting from the 2024 R2 release a single group host variable can be used instead:
 01 wk-values.
 03 wk-value1 pic x(n).
 03 wk-value2 pic x(n).
 03 wk-value3 pic x(n).

The sub items will be used to set value1 to valueN.

The VALUES INTO statement produces a result table consisting of at most one row and

assigns the values of columns in that row to host variables. For example:
 EXEC SQL
 VALUES(CURRENT PATH) INTO :hvl
 END-EXEC.

This statement is supported when using the -csdb2 compiler option and is internally

translated to:
 EXEC SQL
 SELECT CURRENT PATH INTO :hvl FROM SYSIBM.SYSDUMMY1
 END-EXEC.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 26 of 31

The DECLARE VARIABLE statement defines a CCSID for a host variable and the subtype of

the variable. When it appears in an application program, the DECLARE VARIABLE

statement causes the compiler to tag a host variable with a specific CCSID. When the host

variable appears in an SQL statement, the compiler places this CCSID in the structures that

it generates for the SQL statement.

Some examples:

 EXEC SQL
 DECLARE :W1AX-FG-NR-EBC VARIABLE CCSID EBCDIC
 END-EXEC.

specifies that the default EBCDIC CCSID for the type of the variable at the server should be

used.

 EXEC SQL
 DECLARE :W1AX-FG-NR-ASC VARIABLE CCSID ASCII
 END-EXEC.

specifies that the default ASCII CCSID for the type of the variable at the server should be

used.

 EXEC SQL
 DECLARE :W1AX-FG-NR-BIT VARIABLE FOR BIT DATA
 END-EXEC

specifies that the values of the host-variable are not associated with a coded character set

and therefore are never converted.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 27 of 31

isCOBOL IDE

isCOBOL IDE 2024 R2 supports subfolders in the “Structural view” used for Screen

programs or WOW programs and in the “Data view” used for FD/SL files managed in the

painters. This enables developers to more effectively organize a project, keeping the

programs of different categories in different folders.

In addition, the Reconciling feature can now be executed on demand with a menu item or

by using the corresponding hot key combination when the developer needs it. This is

useful when the Reconciling feature is not always activated, allowing it to be executed as

needed.

In Figure 7, IDE subfolders and Force reconciling, the new features are shown.

Figure 7. IDE subfolders and Force reconciling.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 28 of 31

Additional improvements

The isCOBOL 2024 R2 release contains additional improvements on configuration

properties, EIS Servlets, COBOL WOW optimization and EsqlRuntime class.

New configurations

The Profiler utility has been enhanced with the following new configurations:

- iscobol.profiler.enable=false to start the program with the profiler disabled. This

is useful when running applications with a user interface and it’s important to avoid

profiling during user interaction. When a program that needs to be profiled is called,

the called program can perform a CALL to the C$PROFILER library to enable the

profiler, providing more accurate results.

- iscobol.profiler.elapse_time=n to sets a timeout in seconds for a profiler flush.

This is useful when running batch programs that take a long time but for the

developer’s analysis it’s enough to collect the first n seconds or minutes of the

execution. With this configuration set, after the elapsed time the profiler flushes the

results, and the program keeps running until completion.

The CALL PROGRAM has been enhanced with a new configuration:

- iscobol.call_program.set_switches=true to set switches in CALL PROGRAM

statement with syntax /A/B. When this configuration is set a statement like this:
 CALL PROGRAM "MYPROG/A/D".

executes the MYPROG program and activates its switch "A" and switch "D".

Without this option, performing the CALL above would try to invoke program D inside

a folder MYPROG/A.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 29 of 31

EIS Servlets

EIS Servlets manage sessions using what’s called “jsessionid” which acts as an identifier for

the session. It is usually stored as a cookie in the browser, but in some scenarios that may

not be the desired way. For example, multiple tabs on the same page share cookies so all

tabs share the same session on the server.

To provide independent tabs a different session tracking solution is needed.

By modifying the web.xml file associated with the web application, the tracking mode can

be overridden, as shown by the code snippet below.
 <session-config>
 <tracking-mode>URL</tracking-mode>
 </session-config>

With this configuration, the session tracking mode switches from cookies to URL. isCOBOL

EIS Servlet checks the invoked URL for the presence of a jsessionid query parameter, and

executes an URL redirection if none is found, appending the string

";jsessionid=<sessionId>" to the original URL where <sessionId> is the id of the session.

The setting written in the web.xml file causes the creation of a new session of each call to

our servlet that lacks the jsessionid parameter but will switch to the provided session

when a matching sessionid is located.

Each browser tab can then specify a different jsessionid parameter allowing different

sessions to be used.

Be mindful when using such a feature, since the session id will be visible in the URLs and

can be replicated with copy and paste and stored in proxy server logs, web server logs and

browser history. This could allow an attacker to grab a valid session ID and get access to

your users’ sessions.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 30 of 31

COBOL WOW optimization

Applications migrating from RM/COBOL WOW can now be optimized by calling the new

WOWSTARTBUFFERING and WOWSTOPBUFFERING routines to enable the buffering

system during WOW calls. This is especially useful when running in ThinClient or

WebClient environments, as it reduces the TCP communication overhead to improve

responsiveness. After the WOWSTARTBUFFERING routine is called all following CALLs to

WOW routines are buffered by the isCOBOL Server. When the WOWSTOPBUFFERING

routine is called, the updates are sent to the client, causing the user interface to update

and repaint as needed and providing a smoother user experience. This feature is similar to

the corresponding MASS-UPDATE feature used for Screen programs.

A code snippet like this:

 CALL WOWSTARTBUFFERING USING WIN-RETURN
 CALL WOWSETPROP USING WIN-RETURN CT1 "VISIBLE" 0
 PERFORM UNTIL EXIT
 ...
 CALL AXSETINDEXPROP USING WIN-RETURN CT1 "CellText" WCOL0 WLIN1 0
 CALL AXSETINDEXPROP USING WIN-RETURN CT1 "CellText" WCOL1 WLIN1 1
 CALL AXSETINDEXPROP USING WIN-RETURN CT1 "CellText" WCOL2 WLIN1 2
 ...
 END-PERFORM
 CALL WOWSETPROP USING WIN-RETURN CT1 "VISIBLE" 1
 CALL WOWSTOPBUFFERING USING WIN-RETURN

loads an entire ctGrid with minimal TCP overhead.

isCOBOL Evolve 2024 R2 Overview

© Copyright 2024 Veryant. All rights reserved. Page 31 of 31

EsqlRuntime class

The com.iscobol.rts.EsqlRuntime class contains a new method named getResultSet to

retrieve the ResultSet object of a Cursor. This object can then be passed to methods in

Java classes that require such objects. The method signature of the implemented method

is:
 public static ResultSet getResultSet(String cursorName)

and this is a code snippet on how to use it after the cursor is opened:
 repository.
 class ESQLRuntime as "com.iscobol.rts.EsqlRuntime"
 class ResultSet as "java.sql.ResultSet"
 ...
 77 obj-rs object reference ResultSet.
 ...
 EXEC SQL
 OPEN CUR
 END-EXEC.
 set obj-rs to ESQLRuntime:>getResultSet("CUR")
 ...

