

© 2025 Veryant. All rights reserved.

isCOBOLTM Evolve
isCOBOL Evolve 2025 Release 1 Overview

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 2 of 31

Copyright © 2025 Veryant LLC.

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and recompilation. No part of this product or document may be reproduced in
any form by any means without the prior written authorization of Veryant and its licensors if any.

Veryant and isCOBOL are trademarks or registered trademarks of Veryant LLC in the U.S. and other
countries. All other marks are the property of their respective owners.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 3 of 31

isCOBOL Evolve 2025 Release 1 Overview

Introduction

Veryant is pleased to announce the latest release of isCOBOL Evolve, isCOBOL Evolve 2025

R1.

isCOBOL Evolve provides a complete environment for the development, deployment,

maintenance, and modernization of COBOL applications.

In this version a new GUI control has been added, barcodes and QR codes can now be

generated, and the search panel available in several controls has been updated.

Improvements have been developed for local variables, nested program-id and more.

isCOBOL Debugger can now display local and inline variable and supports forward and

backward navigation of source code.

isCOBOL Database Bridge now supports native Java access to DBMaker using its JDBC

driver.

Details on these enhancements and updates are included below.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 4 of 31

GUI enhancements

IsCOBOL Evolve 2025 R1 introduces a new control, SPLIT-PANE, useful to enhance the

visuals of GUI applications. Also, the W$BITMAP routine can now create barcodes of

various types and the search panel has been updated.

SPLIT-PANE

The new SPLIT-PANE is a control that can be used to divide a screen area into two sections,

either horizontally or vertically, and allows the user to resize the panes by dragging a

divider. This component is useful when the User Interface requires 2 sections, for example

a master-details view, and to allow the user to control how much space each section

should take up.

The container can be customized using the following properties:

- DIVIDER-LOCATION to specify the location of the divider bar in percentage of the size

of the Split-Pane; default: 50.

- DIVIDER-SIZE to set the size in pixels of the divider bar; default: LAF dependent.

- MIN-DIVIDER-LOCATION to set the minimum location where the user can move the

divider bar; default: 0.

- MAX-DIVIDER-LOCATION to set the maximum location where the user can move the

divider bar; default: 100.

- SPLIT-ORIENTATION to specify if the split is horizontal (0, default) or vertical (1).

Additional properties that should be set on the controls include:

- SPLIT-GROUP to specify the name of the split pane to which a screen section group

should be added.

- SPLIT-GROUP-AREA to specify the area of the split pane that will host the group of

controls: 1 is left or top, 2 is right or bottom.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 5 of 31

With the following code snippet:
 SCREEN SECTION.

01 Mask.
 ...

 05 split-pane-v split-pane
 line 2 column 2 size 78-split-pane-size cells lines 15.5
 divider-location 78-initial-percent-divider
 min-divider-location 20
 max-divider-location 70
 split-orientation 0
 border-color rgb x#ACACAC
 event procedure SP-EVENT.
 ...
 05 split-pane-v-page-1
 split-group split-pane-v split-group-area 1.
 07 ls list-box
 ...
 05 split-pane-v-page-2
 split-group split-pane-v split-group-area 2.
 07 label title "Title:"
 ...
 PROCEDURE DIVISION.
 ...
 display Mask

 SP-EVENT.
 if event-type = ntf-sp-resized
 evaluate true
 when event-data-1 > 78-initial-percent-divider
 compute list-size = 78-initial-list-size +
 ((78-sroll-pane-size / 100) *
 (event-data-1 - 78-initial-percent-divider))
 when ...
 end-evaluate
 display split-pane-v-page-1
 end-if.

a split-pane is created with the two areas divided horizontally. The left pane contains a list-

box, and the right pane contains entry fields. This is the typical example of a master-

details scenario, where the list contains data, and when the user clicks an item the

program loads the details of the selected item and displays them in the entry-fields on the

right. The user can choose the size ratio between the master-view (the list-box) and the

details-view (the entry-fields).

A new event procedure, NTF-SP-RESIZED, returns the selected percentage in the event-

data-1 data-item.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 6 of 31

When dragging the bar, the dimensions of the two areas are changed. The result of the

program in execution with the original size is shown in Figure 1, The Split-Pane with

original size, while in Figure 2, The Split-Pane after resizing, the same screen is shown with a

different split ratio for the list-box. The source code is included in the issamples folder

installed with the new release.

Figure 1. The Split-Pane with original size

Figure 2. The Split-Pane after resizing

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 7 of 31

Barcode creation using W$BITMAP

Barcodes are very common and often need to be integrated in applications. The 2025 R1

release introduces the new WBITMAP-BARCODE-BOX in the W$BITMAP library to allow

easy generation of bar codes from COBOL applications. Several barcode and output

generation formats are supported.

The following is a code snippet from a sample included in the issamples folder of the new

release and shows the use of the new feature:
 call "w$bitmap" using wbitmap-barcode-box
 p-text
 wbitmap-bb-data
 wrk-error-description
 giving h-bmp-barcode.

The generated barcode image is stored in memory to be displayed using a control that has

a bitmap property or printed with the WINPRINT-PRINT-BITMAP opcode in WIN$PRINTER

routine. The image can also be stored in disk file by calling the W$SAVE_IMAGE routine

and can then be printed using the P$DRAWBITMAP routine or used by third party

applications that require the image on disk.

Figure 3, A QR code generation, shows the QR code generated by passing the string

www.veryant.com in the text parameter of the W$BITMAP routine.

Figure 3. A QR code generation

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 8 of 31

Figure 4, EAN 13 code generation, shows the result of the image that is generated passing a

numeric value with the EAN 13 barcode type.

Figure 4. EAN 13 code generation

Customize the search panel

The search panel is an integrated component that appears by default when pressing

Ctrl+F when the focus is on a control that contains multiple lines, such as grid, list-box or

tree-view. The search panel can be made always visible by setting the SEARCH-PANEL to 1

on the control. On previous releases, this feature allowed users to filter the content of the

control for a specific text, removing from view the lines not included in the filter. Starting

from the 2025 R1 release it’s possible to specify if the search text should act as a filter or

just to highlight the search text in lines. It’s also possible to navigate between the results

with two new navigation buttons. This is like the search feature used by browsers when

searching text on the page.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 9 of 31

The new configuration option iscobol.gui.search_panel_settings=nnnn is used to

set the visibility of items in the search panel. The value is a string of positional 0s and 1s

that configuring, in order:

- Set the Filter operation mode to the filter or search behavior

- Enable Navigation buttons to change the selected search text

- Enable a Clean button to set the value of search entry to empty

- Case sensitive button to change the search criteria from sensitive to insensitive

In addition, the value 2 or 3 is supported for buttons to set the initial pressed state. The

first and last buttons support these values. For example, 2 shows a visible and pushed

button while 3 shows a visible but not pushed button.

The default value of this new configuration is 1012, which specifies the same filter

behavior for backwards compatibility.

OOP syntax can be used to assign a different behavior to a specific control, invoking

methods provided in the new com.iscobol.gui.server.SearchPanelSettings class

For example, the following code snippet:
 REPOSITORY.
 class sp-settings as "com.iscobol.gui.server.SearchPanelSettings"
 class j-boolean as "java.lang.Boolean"
 ...
 SCREEN SECTION.
 01 Mask.
 ...
 05 tv-songs tree-view
 ...
 WORKING-STORAGE SECTION.
 77 h-tv-songs usage handle.
 77 tv-songs-settings object reference sp-settings.
 PROCEDURE DIVISION.
 ...
 display Mask
 set h-tv-songs to handle of tv-songs
 set tv-songs-settings to sp-settings:>new(h-tv-songs)
 tv-songs-settings:>setShowFilterButton(j-boolean:>TRUE)
 tv-songs-settings:>setFilterEnabled(j-boolean:>FALSE)
 tv-songs-settings:>setShowNavigationButtons(j-boolean:>TRUE)
 tv-songs-settings:>setShowCleanButton(j-boolean:>TRUE)
 tv-songs-settings:>setShowCaseSensitiveButton(j-boolean:>TRUE)
 tv-songs-settings:>setCaseSensitiveEnabled(j-boolean:>FALSE)
 ...
 accept Mask
 ...

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 10 of 31

Allows changing the visibility state of the search panel elements, using the handle for the

control and calling the setters for the specific property.

Figure 5, Customize the search panel, shows the result of running a program with a fully

customized search panel area, with the current search selection highlighted in green after

pressing the navigation buttons. All the other matches are highlighted in yellow.

Figure 5. Customize the search panel

Other configurations have been implemented and improved:

iscobol.gui.search_delay=n (default 500) to specify when the control should start

filtering data while the user interacts with the search panel in grid, list-box and tree-view

controls (also known as “debounce timer”).

iscobol.gui.matching_text_color=n;n2 to set the two colors used to highlight the

searched text: the first one, before ";", is used to specify the color for all the occurrences

found (default yellow), and the color after the ";", is used to color the current occurrence

selected with navigation buttons (default green). For example, setting
iscobol.gui.matching_text_color= -6849454,-16777215;-15014170,-
16777215 will result in using light blue and red for background and white for both

foreground colors when running the program. As shown in Figure 6, Different matching

colors, the output of the same program in execution demonstrates how to easily change

colors without changing code to achieve a coherent look and feel of the entire COBOL

application.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 11 of 31

Figure 6. Different matching colors

Additional improvements

A New property, CELL-ALIGNMENT, has been implemented in the grid control to set the

alignment of a specific cell. The values supported by CELL-ALIGNMENT are the same

already supported in the property ALIGNMENT that is used to set on every cell in the entire

column. Setting the new CELL-ALIGNMENT helps in aligning specific cells differently than

the default alignment, for example to display right-aligned number cells. In the code

snippet:
 screen section.
 ...
 03 grid-days grid
 alignment ("L" "R")
 ...
 procedure division.
 ...
 modify grid-days (3, 2) cell-alignment "C"

the second column has alignment set to “R”, making it right aligned, but just the column at

line 3 has set alignment set to “C” which is centered.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 12 of 31

New styles have been added in the chips-box control:

- 3-D, BOXED, NO-BOX to set different types of boxing around the control

- UNSORTED to load the chips in the order specified by the program instead of having

them automatically sorted in alphabetical order.

For example, with the following code snippet:
 screen section.
 ...
 03 chips-favorite chips-box
 unsorted no-box
 ...
 procedure division.
 ...
 modify chips-favorite item-to-add "CC"
 modify chips-favorite item-to-add "BB"
 modify chips-favorite item-to-add "AA"

the container has the no-box style, which uses a flat look and feel, and the chips are

displayed in the order in which they are inserted.

A new configuration, iscobol.bitmap.load_method=2 allows loading legacy .BMP files

that otherwise are not supported by the Java runtime. The configuration option activates

a new graphics loading algorithm that can handle older formats.

The web-browser control VALUE property can now display HTML code directly instead of

loading from a URL. When the value starts with "<html>" the content is assumed to be

html code and not a URL.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 13 of 31

Compiler enhancements

The Compiler supports new syntax that allows local variable declaration in a block and

improves the declaration of parameters in Method-ID for Object Oriented Programming.

Java classes with generic types can now be declared with a specific type, simplifying the

casting using the syntax “< >”. Also, concatenation using the “&” operator has been

improved.

Local variable declaration

Many languages such as C# and Java support local variable declaration syntax to create a

variable in a specific method or code block. This has several advantages, including:

- no risk of reusing the same variable in a different code block, creating conflicts

- thread safe code related to the variable when running multi-threading programs

The newest isCOBOL compiler implements the local variable declaration with the new

DECLARE statement.

The DECLARE statement declares one or more local variables within the Procedure

Division body. The scope of any inline local variable is from the point of declaration until

the end of the innermost containing block. Statement clauses, paragraphs, sections and

the whole method are considered to be blocks. The type of variable can be a primitive

type, a java class object or any COBOL picture declared under a TYPEDEF clause. A code

snippet like:
 repository.
 class jstring as "java.lang.String"
 ...
 working-storage section.
 01 type-count pic 9(9) comp typedef.
 ...
 procedure division.
 ...
 if var1 = 1
 declare temp as jstring
 move "ABC" to temp
 ...
 else
 declare temp as type-count = 0
 move 123 to temp
 ...
 end-if.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 14 of 31

shows the temp variable declared in two different blocks; the first inside the IF where the

variable is declared as java.lang.String, the other inside the ELSE where the variable is

declared as “pic 9(9) comp” that is the picture used in the assigned TYPEDEF.

Shorter declaration of parameters in Method-ID

The Compiler supports a new syntax to define method parameters directly in the

METHOD-ID paragraph, without using the Linkage Section and the USING clause after

PROCEDURE DIVISION. This is typically useful in class-id with many methods that receive

and return parameters. It’s now possible to specify the method signature directly in the

METHOD-ID. A code like:
 method-id. setAccount as "setAccount" (par1 as JString,
 par2 as JString,
 par3 as JInt).
 procedure division.

is equivalent to this:
 method-id. setAccount as "setAccount".
 linkage section.
 77 par1 object reference JString.
 77 par2 object reference JString.
 77 par3 object reference JInt.
 procedure division using par1,
 par2,
 par3.

The advantage is shorter code and a source that looks more similar to other languages, for

example in Java the equivalent code is:
 public static void setAccount(java.lang.String par1,
 java.lang.String par2,
 java.lang.Integer par3)

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 15 of 31

Improved Generic type parameter support

Java generics are a powerful feature that allows you to write more flexible and reusable

code. They enable you to define classes, interfaces, and methods with type parameters,

which can be specified when you instantiate or invoke them.

Generics help maintain consistency in your code by ensuring that the same type is used

throughout a collection or method. This reduces the likelihood of errors and makes the

code easier to understand and maintain.

Here are some key benefits of using generics:

- Enhanced Readability: By specifying the type of elements a collection can hold,

generics make the code more readable. It becomes clear what type of objects are

expected, which helps other developers (or your future self) understand the code

more quickly.

- Type Safety: Generics ensure that you catch type errors at compile time rather than at

runtime. This reduces the risk of ClassCastException and makes your code more

robust.

- Code Reusability: With generics, you can write a single class or method that works with

different types. This eliminates the need for multiple versions of the same code.

- Elimination of Casts: Generics allow you to avoid explicit casting, making your code

cleaner and easier to read.

- Improved Performance: Since generics provide compile-time type checking, they can

help optimize performance by reducing the need for runtime type checks.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 16 of 31

Here's a simple example to illustrate the use of Java generics:
 configuration section.
 repository.
 class ArrayListS as "java.util.ArrayList<java.lang.String>"
 class ArrayListI as "java.util.ArrayList<java.lang.Integer>"
 ...
 working-storage section.
 77 stringList object reference ArrayListS.
 77 integerList object reference ArrayListI.
 ...
 procedure division.
 ...
 set stringList to ArrayListS:>new()
 stringList:>add("AA")
 stringList:>add("BB")
 stringList:>add("CC")
 set integerList to ArrayListI:>new()
 integerList:>add(1)
 integerList:>add(2)
 integerList:>add(3)

In this example, we create two ArrayList instances: one for String objects and another for

Integer objects. The use of generics ensures that only the specified type of elements can

be added to each list, providing type safety and eliminating the need for explicit casting.

The compiler uses the "< >" syntax in the class name to specify the type of the “generics”

arguments.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 17 of 31

Concatenation using “&”

The Compiler already supports the syntax “&” to concatenate two or more string literals.

Starting from the 2025 R1 release concatenation is also supported between data-items,

method results and resource strings, making it much more useful and versatile. It allows

you to reduce the code that typically requires additional variable definitions and the

STRING statement.

For example, the following code snippet:
 repository.
 class jstring as "java.lang.String"
 ...
 working-storage section.
 77 var pic x any length.
 77 dest pic x any length.
 77 objstr object reference jstring.
 ...
 procedure division.
 ...
 move "String literal" & var
 & r"myres"
 & objstr:>toUpperCase()
 to dest

shows that a string literal is concatenated with a data item, a resource that is declared in

the file loaded with the configurations iscobol.resource.file, iscobol.resource.country and

iscobol.resource.language and the values returned by the call to the toUpperCase method.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 18 of 31

Compatibility improvements

isCOBOL 2025 R1 has been enhanced to improve compatibility with other COBOL dialects

such as MicroFocus COBOL and IBM COBOL. The syntax improvements in the compiler are

related to nested programs and XML. A new library routine has been added.

Nested programs

Multiple programs can be included in the same source file repeating the PROGRAM-ID /

END PROGRAM syntax. There are two different scenarios:

- If a program is included before the END PROGRAM clause of another program, it

becomes a nested program, and it can be called only by its parent program.

- If a program is included after the END PROGRAM clause of another program, it

becomes a sibling program, and it can be called by every other program in the

runtime session.

For example, in the code:
 PROGRAM-ID. customer.
 WORKING-STORAGE SECTION.
 ...
 PROCEDURE DIVISION.
 ...
 EXIT program.
 END PROGRAM customer.

 PROGRAM-ID. product.
 WORKING-STORAGE SECTION.
 ...
 PROCEDURE DIVISION.
 ...
 CALL "show" USING ...
 ...
 EXIT program.

 PROGRAM-ID. show.
 WORKING-STORAGE SECTION.
 ...
 LINKAGE SECTION.
 ...
 PROCEDURE DIVISION USING ...
 ...
 END PROGRAM show.

 END PROGRAM product.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 19 of 31

There are three declared PROGRAM-IDs; “customer” and “product” that are sibling

programs and can be called as normal programs, and “show”, which is a program-id

declared inside the “product” program and therefore can only be called inside the

“product” program. Executing the same CALL to “show” in a different program causes the

runtime error “CALL not found” to be raised.

XML improvements

XML PARSE is a statement used to parse an XML document into its individual components

that are then passed, one at a time, to a user-written processing procedure. The XML

GENERATE statement converts data to XML format. In version 2025 R1 the additional

clauses VALIDATING and ENCODING are now supported to improve compatibility and

enhance the feature:

- VALIDATING will validate the XML file during the PARSE using a schema file declared in

the SPECIAL-NAMES

- ENCODING will set the encoding to be used during the XML PARSE and XML

GENERATE statements

For example, the following code snippet:
 CONFIGURATION SECTION.
 SPECIAL-NAMES.
 XML-SCHEMA XMLSCHART IS 'XMLSCHART.XSD'.
 PROCEDURE DIVISION.
 ...
 XML GENERATE OUTPUT-XML FROM INPUT-XML
 COUNT IN XML-SIZE
 WITH ENCODING 1208
 END-XML
 ...
 XML PARSE OUTPUT-XML
 VALIDATING WITH FILE XMLSCHART
 WITH ENCODING 1208
 PROCESSING PROCEDURE EVENT-HANDLER
 END-XML

declares the XML-SCHEMA named XMLSCHART under SPECIAL-NAMES, assigning it to a

physical schema (.xsd) file. During the XML PARSE, the XMLSCHART schema is passed to

the VALIDATING clause. Both statements, XML GENERATE and XML PARSE use the

ENCODING clause to force a different encoding than the one used when running. In this

case 1208 means UTF-8.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 20 of 31

Library routine

A new library routine named CBL_LOCATE_FILE has been implemented to enhance

compatibility with MicroFocus COBOL. The CBL_LOCATE_FILE routine has two uses: it can

be used to expand an environment variable in a file specification, where the environment

variable contains a list of several paths. It can also determine whether an OPEN INPUT

statement using a particular file specification finds the file on disk.

A code snippet like this:
 WORKING-STORAGE SECTION.
 77 user-file-spec pic x(128).
 77 user-mode pic x comp-x.
 01 actual-file-spec.
 03 buffer-len pic x(2) comp-x.
 03 buffer pic x(128).
 77 exist-flag pic x comp-x.
 77 path-flag pic x comp-x.
 77 status-code pic xx comp-5.
 ...
 PROCEDURE DIVISION.
 ...
 move "$PATH\dyncall.dll" to user-file-spec
 move 0 to user-mode
 initialize actual-file-spec
 move 128 to buffer-len
 call "CBL_LOCATE_FILE" using user-file-spec
 user-mode
 actual-file-spec
 exist-flag
 path-flag
 returning status-code

checks if the dyncall.dll library is in the PATH.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 21 of 31

ESQL enhancements

The new 2025 R1 release improves compatibility with ESQL Precompilers, such as

ProCobol and DB2prep. The embedded SQL language has been improved by adding

support of SAVEPOINTs and LOB locator.

SAVEPOINT support

A savepoint in SQL is a mechanism that allows you to set a specific point within a

transaction to which you can later roll back. This feature is particularly useful for

implementing partial rollbacks in case of errors or other exceptional conditions within a

transaction. The below procedural code demonstrates the feature:

 *working in autocommit-off mode
 *insert one record
 EXEC SQL
 INSERT INTO TEST_TABLE (COL_1) VALUES ('aaa')
 END-EXEC
 *define a savepoint
 EXEC SQL
 SAVEPOINT SP1
 END-EXEC.
 *insert another record
 EXEC SQL
 INSERT INTO TEST_TABLE (COL_1) VALUES ('bbb')
 END-EXEC
 *rollback to savepoint
 EXEC SQL
 ROLLBACK TO SAVEPOINT SP1
 END-EXEC.
 *check table content
 EXEC SQL
 DECLARE CUR SCROLL CURSOR FOR
 SELECT COL_1 FROM TEST_TABLE
 END-EXEC
 EXEC SQL
 OPEN CUR
 END-EXEC
 PERFORM UNTIL SQLCODE = 100
 EXEC SQL
 FETCH NEXT CUR INTO :WRK-COL1
 END-EXEC
 DISPLAY WRK-COL1
 END-PERFORM
 ...

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 22 of 31

When running this code, the program will display only ‘aaa’ because the insertion of ‘bbb’

has been cancelled by the ROLLBACK statement, as the ROLLBACK statement will cancel

all operations that occurred after the specified SAVEPOINT.

SQL TYPE improvement

LOB (Large Objects) can now be mapped to host variables through locator variables with

an IBM DB2 compliant syntax. BLOB, CLOB, and DBCLOB are data types used in databases

to store large amounts of data. BLOB is used for binary data like images, audio, and video,

making it ideal for multimedia files. CLOB is designed for large text documents, storing

character data such as XML or JSON. DBCLOB is tailored for double-byte character data,

which is common in languages like Chinese, Japanese, and Korean, making it suitable for

large text data in these languages. Each type is optimized for different data formats to

ensure efficient storage and retrieval.

The newly added SQL syntaxes are:

 dataitem SQL TYPE IS BLOB-LOCATOR.
 dataitem SQL TYPE IS CLOB-LOCATOR.
 dataitem SQL TYPE IS DBCLOB-LOCATOR.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 23 of 31

The example below demonstrates how to read the content of a CLOB column using a

CLOB-LOCATOR on IBM DB2:

 WORKING-STORAGE SECTION.
 01 LOB-LOCATOR USAGE SQL TYPE IS CLOB-LOCATOR.
 01 LOB-BUFFER PIC X(128).
 ...
 PROCEDURE DIVISION.
 ...
 EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT CLOB_COLUMN INTO :LOB-LOCATOR
 FROM LOB_TABLE WHERE LOB_ID = 1
 END-EXEC
 EXEC SQL
 OPEN C1
 END-EXEC
 EXEC SQL
 FETCH C1 INTO :LOB-LOCATOR
 END-EXEC
 EXEC SQL
 SELECT :LOB-LOCATOR
 INTO :LOB-BUFFER
 FROM SYSIBM.SYSDUMMY1
 END-EXEC

Although this is DB2 compliant syntax, it can also work on other databases if they support

the three kinds of large objects associated with the locator. For example, the above code

can work also in Oracle after changing the SYSIBM.SYSDUMMY1 to DUAL.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 24 of 31

Runtime enhancements

The isCOBOL runtime has been enhanced with a new option to measure the time spent,

new configuration options and others.

-time option

A new option, named –time, is supported by the iscrun process to measure the time spent

by the running session. This is useful in batch programs whose runtime needs to be

measured. The same option is supported by the trun process.

For example, running the command:

iscrun -time IO_INDEXED

The output is:
 INDEXED FILES
 NUM-TIMES: 10000
 ...
 Total time elapsed: 3.60 seconds

The last line shows the total time elapsed, including the time spent for Java startup and

shutdown.

New configurations:

A new property, iscobol.runtime-preload, has been implemented to preload a list of

programs separated by space or comma. This feature is similar to the C$PRELOAD routine

that loads all the COBOL programs contained in a jar library or in a folder, but you can use

this configuration to list arbitrary program names without the need to create a separate jar

file or a folder to group the programs.

The property also helps in cases where a PROGRAM-ID contains ENTRY points, and the

caller program calls the entry directly without ever calling the main program. This

approach is the equivalent of C functions called in a native library and preloaded with the

configuration iscobol.shared_library_list.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 25 of 31

For example, having these entry points declared in this PROGRAM-ID:

 program-id. progentry.
 procedure division.
 main.
 ...
 entry "entry1".
 ...
 entry "entry2".
 ...

a program can now execute:
 call "entry1"
 call "entry2"

without adding the CALL “progentry” before calling the entry points by setting the

configuration property:
 iscobol.runtime.preload=progentry ...

A new property iscobol.file.env_toupper=false has been implemented to resolve

file aliases in case sensitive way. When searching for an environment variable, its name is

considered in upper case by default. By setting this new configuration to false the runtime

will look for the environment variable in case sensitive way, keeping the case used in the

program source code. It affects only environment variables in file names, for example with

this select:
 select customers assign to "$datapath/customers"

the runtime will search for the file “customer” in the $datapath environment variable

instead of $DATAPATH. The same behavior is applied to file names remapped in the

environment when having iscobol.file.env_naming=true.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 26 of 31

Other improvements

The WIN$PLAYSOUND routine now supports files included in the source with COPY

RESOURCE statement. This avoids the need to provide the physical file in the production

environment since the resource file is included in the .class when compiling the COBOL

source.

The USE AT PROGRAM START declaratives have been enhanced by supporting the linkage

parameters and library routines. The statement is useful to provide startup code that will

be executed only once when the program is instantiated.

New methods are implemented in the com.iscobol.rts.IscobolSystem class. The method

signatures are:

 public static void duplicateIscobolEnv(Thread src, Thread dst)
 public static void destroyIscobolEnv(Thread th)

The duplicateIscobolEnv method is useful to duplicate the isCOBOL environment between

Java threads. The destroyIscobolEnv method is used to clear the isCOBOL environment of

a Java thread. These methods help in the COBOL integration with Java for multithread

environments that require an isolated environment, similar in the COBOL solution under

the CALL RUN statement.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 27 of 31

Debugger enhancements

The isCOBOL Debugger has been improved, adding support for inline and local variables,

improved code navigation and other minor improvements.

Inline and local variables

Inline declared items and local variables using the DECLARE statement are now fully

supported in the debugger. When compiling a source that contains DECLARE statements

or inline items in debug mode, the compiler generates additional .class files that start with

the same program name and have a suffix like $LocalVars$n.

The debugger uses these classes to access local variables. Source code needs to be

compiled using the -d or -dx options (debug compilation).

As shown in Figure 7, Access to local variables from Debugger, the local variables are

handled as regular variables, and they are integrated in Current Variables, in the Watched

variables, etc... helping developers in the debugging activity.

Figure 7. Access to local variables from Debugger

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 28 of 31

Other improvements

Two new buttons have been added in the Debugger tool-bar, and are used to execute the

Back and Forward commands in the history of selected lines with the feature “Go to

declaration”. Navigating to declaration can also be performed by double clicking on a

paragraph name or a data item or using the hyperlink declaration. This feature simplifies

source code navigation, allowing you to re-select a previously selected line, similar to how

the isCOBOL IDE implements it in the Eclipse environment. As shown in Figure 8, Back

history feature, the history of the navigated lines is listed in a pop-up menu, and selecting

an item from the list will load the corresponding source file at the specified line.

Figure 8. Back history feature

The new RESTART command can be used to stop and automatically restart the debugging

session. The command is also available in the Run menu and in a new tool-bar button.

By default, the Output view shows the first 1024 characters of a data item, but the existing

Display and Env commands have been improved with the addition of the -full option,

which will display the whole content of large data items.

In addition, the graphical window “Display variable” now contains a new check-box to

specify the –full option.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 29 of 31

The Debugger Output view now shows errors using a different color, red by default but it

can be customized in the “Fonts and Colors” settings.

As shown in Figure 9, -full option, the new option is used to show the content of the large

data item and the previous command executed with a typo error, -fill instead of –full, is

shown in the Output view in red text.

Figure 9. –full option

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 30 of 31

IsCOBOL Database Bridge

isCOBOL Database Bridge is the tool that enables COBOL programs to interact with RDBMs

without changing COBOL source code or learning ESQL. It has been enhanced to support

a new relational database: DBMaker.

DBMaker is a powerful and flexible SQL Database Management System (RDBMS) that

supports an interactive Structured Query Language (SQL), a Microsoft Open Database

Connectivity (ODBC) compatible interface, and Embedded SQL for C (ESQL/C). DBMaker

also supports a Java Database Connectivity compliant interface and DBMaker COBOL

interface (DCI). The unique open architecture and native ODBC interface give you the

freedom to build custom applications using a wide variety of programming tools or to

query databases using existing ODBC-compliant applications. DBMaker is easily scalable

from personal single-user databases to distributed enterprise-wide databases. The

advanced security, integrity, and reliability features of DBMaker ensure the safety of critical

data. Extensive cross-platform support permits you to leverage existing hardware, allows

for expansion and upgrades to more powerful hardware as your needs grow. DBMaker

provides excellent multimedia handling capabilities to store, search, retrieve, and

manipulate all types of multimedia data. Binary Large Objects (BLOBs) ensure the integrity

of multimedia data by taking full advantage of the advanced security and crash recovery

mechanisms included in DBMaker. File Objects (FOs) manage multimedia data while

maintaining the capability to edit individual files in the source application.

isCOBOL already supported the DCI interface to access DBMaker’s tables using statements

like OPEN, READ, WRITE, using two configurations:

iscobol.file.index=dci to use the DCI C client library in the same Java process. This is

typically used in standalone processes

and

iscobol.file.index=dcic to use the DCI C client library in a separated process that is

called DCI connector. This is typically used in multithread environments like isCOBOL

Server with multiple ThinClient or WebClient connections.

isCOBOL Evolve 2025 R1 Overview

© Copyright 2025 Veryant. All rights reserved. Page 31 of 31

The isCOBOL Database Bridge now supports the DBMaker’s JDBC driver, making it a better

choice when deploying in environments such as Tomcat or Java Servlet containers, where

a 100% Java access is preferable.

To generate EDBI routines for DBMaker, use the following Compiler configuration:

iscobol.compiler.easydb=1

iscobol.compiler.easydb.dbmaker=1

Routines for DBMaker have the dbm prefix in their name; for example, having a file whose

physical name (or EFD FILE directive value) is "articles", the Compiler will generate a

routine named dbmEDBI-articles.cbl.

Routines for DBMaker can be also generated with the legacy approach, through the edbiis

command, that is now improved with a new option: -dd.

By processing EFD dictionaries with the new -dd option, you obtain EDBI routines without

the dbm file suffix; for example, given the articles.xml EFD dictionary file, the edbiis

command will generate a routine named EDBI-articles.dbm.

Although EDBI routines for DBMaker can be used with both the legacy type 3 JDBC driver

(dmjdbc30.jar) and the new type 4 JDBC driver (dmjdbct4.jar), it is suggested to use EDBI

routines for DBMaker with the new type 4 JDBC driver, as it is a pure Java driver without

any native dependency, and therefore is suitable for platforms where there’s no porting of

the DBMaker client (i.e. MacOS) and environments where native components are not

always welcomed, like Java Servlet containers.

At runtime, all you need to do is activate the EasyDB file handler as usual by adding the

configuration:

iscobol.file.index=easydb

iscobol.file.prefix=dbm

If your programs operate on platforms or environments where native components are

supported you might consider continuing use of the DCI file handler instead.

