
1

I S SUE

05 2
0

2
1

TRIANNUAL
JOURNAL OF
VERYANT AND
isCOBOL

2021 R2 is here

THIS ISSUE

Veryant is pleased to announce the latest release of isCOBOL™
Evolve, isCOBOL Evolve 2021 Release 2.

he biggest addition in 2021 R2 is the ability to embed, or encapsulate, a
COBOL application within a web page without modifying the COBOL!
By enabling your isCOBOL to talk to webpage languages with the new

IWC routines and GUI control, we’ve made it easy to keep your COBOL and work
with your webpage developers to make an integrated view of two previously
separate environments.

• You no longer need to include the location of the /isdef folder for the compiler
to find isCOBOL’s definition files. It’s done autmatically.

• Linkage variables can now be fixed OR variable length, the runtime will
handle the parameter as it is passed without an error or lost data.

• In the Application Server, you could reload any program found in the code_
prefix paths. This is useful when you modify a program and want to force
it to be loaded in place of the old class by unloading the old class from the
Application Server’s memory. In 2021R2 you can unload ALL the classes
and force the Application Server to start with a fresh copy of all the classes.

• We’ve increased the performance of printing significantly, both by performing
the print in a separate thread, and by using improved TCP packet handling.

• 2021R2 also has improvements in Encoding in the HTTPClient EIS class and
handling Json in the HTTPClient and HTTPHandler classes.

For more information about the new 2021R2 changes you can go to our website
by clicking here.

1. 2021 R2 2. Installing the isCOBOL Server using Docker

6. Faster Printing | Have you seen this? | Documentation Highlights 7. A giant

leap forward for WEB enablement 9. An New Style Updates | How to change

the Default Printer Font | Temporary files in memory 10. New Chromium Web

Browser | Why use the OCCURS DYNAMIC syntax

PLEASE JOIN US ON

Twitter, LinkedIn, or
Facebook to up-to-date
with Veryant’s news

Watch our demonstration
videos and Subscribe to
our YouTube Channel

NEWS

T

VERYANT’S
OFFICE IN
PIACENZA,
ITALY
Be sure to watch the video of
scenes from the 2021 Distributor’s
conference.

Even if you weren’t there, you’ll be
interested in seeing the Piacenza
office and many of the Veryant
people you may recognize or talk
to regularly.

The office’s lobby has several
unique features, including a car
hanging from the wall. See the
“Have you seen this” section on
page 8.

https://www.veryant.com/products/release.html
https://twitter.com/VeryantCOBOL
http://link.rm0007.net/go/FKykRqImzYCrNnQN7BB6hw2/
https://www.facebook.com/veryantCOBOL/
https://www.youtube.com/channel/UCdB0CZahezDc87F7UIvTXAA

2

Installing the isCOBOL Server using Docker

I n order to simplify the process to use isCOBOL Server in a docker container we’ve
created a guide to show you how to build, install and start a Docker repository to run an
isCOBOL Application Server on a Linux 64bit machine.

Docker is a way to provide drop-in solutions to deliver software in packages called

containers, similar to what Platform-as-a-service (PAAS) would offer. Containers run in an
isolated environment and contain their own software, libraries and configuration files. The
containers can communicate with each other through well-defined channels. Because all
of the containers share the services of a single operating system kernel, they use fewer
resources than virtual machines.

Prerequisites

The prerequisites on a Linux 64bit computer (where the docker is built) are :
• The Docker engine (https://docs.docker.com/engine/install/)
 installed from a repository
• A licensed isCOBOL SDK environment
• Your COBOL application running in Thin Client mode

Instruction File

We will start with an instruction file named “Dockerfile”. Because isCOBOL needs Java to
be executed, the isCOBOL repository will be based on the OpenJDK image. All docker
command references here can be found at https://docs.docker.com/engine/reference/
builder.

Then we can set environment variables to be used during the build and from the commands
invoked by the docker image with ENV.

Starting the Application Server in a docker container
is easy and efficient. Here’s a step-by-step guide from
Senior Support Engineer, Valerio Biolchi

Dockerfile
FROM. openjdk:11
MAINTAINER Veryant

ENV ISCOBOL=/var/isCOBOL2021R2
ENV ISCOBOL_CLASSPATH=${ISCOBOL}:${ISCOBOL}/iscontrolset

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/reference/builder
https://docs.docker.com/engine/reference/builder

3

Installing the isCOBOL Server using Docker

The RUN command creates the isCOBOL main folder within the docker container. RUN
executes commands in a new layer and creates a new image. E.g., it is often used for
installing software packages.

Now in order to start our Cobol application thru the isCOBOL Application Server, we need to
copy the appropriate files to the docker container. COPY copies new files or directories from
<src> and adds them to the filesystem of the container at the path <dest>:

Finally, we set the command that will run the isCOBOL Application Server when the docker
image is started. CMD sets default command and/or parameters, which can be overwritten
from command line when docker container runs.

Here are the full contents of the Dockerfile we’ve created to have a container fully working
with isCOBOL Server:

The “CMD” line above uses isserver’s ‘run’ command, which is new in our next version,
2022R1. To use the current or older version, you can start isserver with a script file like run.

sh below:

COPY yourlicense.properties ${ISCOBOL}/iscobol.properties
COPY isCOBOL_SDK2021R2/lib ${ISCOBOL}/lib
COPY isCOBOL_SDK2021R2/bin/isserver ${ISCOBOL}/bin/isserver
COPY isCOBOL_SDK2021R2/sample/iscontrolset ${ISCOBOL}/iscontrolset

Dockerfile
FROM openjdk:11
MAINTAINER Veryant
ENV ISCOBOL=/var/isCOBOL2022R1
ENV ISCOBOL_CLASSPATH=${ISCOBOL}:${ISCOBOL}/iscontrolset
RUN mkdir ${ISCOBOL}
COPY yourlicense.properties ${ISCOBOL}/iscobol.properties
COPY isCOBOL_SDK2022R1/lib ${ISCOBOL}/lib
COPY isCOBOL_SDK2022R1/bin/isserver ${ISCOBOL}/bin/isserver
COPY isCOBOL_SDK2022R1/sample/iscontrolset ${ISCOBOL}/iscontrolset
CMD ${ISCOBOL}/bin/isserver run

CMD ${ISCOBOL}/bin/isserver run

#!/bin/sh
java -cp .:${ISCOBOL}/lib/*:${ISCOBOL}/iscontrolset com.iscobol.as.AppServerImpl
wait $!

RUN mkdir ${ISCOBOL}

Then replace the CMD line in the Dockerfile above with these lines to copy and run the script:

Build the image

Next, we can build the “iscobol” docker image from the folder containing the Dockerfile and
your license. Note that the repository name (iscobol in this example) must be lowercase.

Now we can see the iscobol image by listing all the docker images, showing their repository
name and other information:

Create the Container

Now we want to create a writable container named “iscobolserver” based on the “iscobol”
image. We do this by running the command specified as the CMD tag in the Dockerfile.

At times, you may need to set out some networking rules to enable smooth interaction
between containers in multi-container applications or make your Docker ports accessible
by services in the outside world. An option is to use -p flag or -P flag in the Docker run
string to publish the internal isCOBOL Server default port 10999 to external 10999 Here’s a
command to run the docker, specifying the name of the container, matching the internal and
external ports and specifying the image to use to create the container:

4

REPOSITORY
iscobol
postgres
mysql
ibmcom/db2
mcr.microsoft.com/mssql/server
store/oracle/database-enterprise

TAG
latest
latest
5.6
latest
2019-latest
2019-latest

IMAGE ID
8e66cb700e21
317a302c7480
f3b364958c23
ced2e4b31b7a
80bdc8efc889
12a359cd0528

CREATED
About a minute ago
4 weeks ago
6 weeks ago
8 weeks ago
8 weeks ago
4 years ago

SIZE
706MB
374MB
303MB
2.97GB
1.55GB
3.44GB

COPY run.sh ${ISCOBOL}/bin/run.sh
CMD ${ISCOBOL}/bin/run.sh

root@ubuntu:/home/myDocker/myApp# ls
Dockerfile isCOBOL_SDK2021R2 yourlicense.properties
root@ubuntu:/home/myDocker/myApp# docker build -t iscobol .

root@ubuntu:/home/myDocker/myApp# docker images

docker run --name iscobolserver -p 10999:10999 -d iscobol

Installing the isCOBOL Server using Docker

Now we can check the status of our “iscobolserver” container.

root@ubuntu:/home/myDocker/myApp# docker ps -a

It shows that the isCOBOL Application Server is listening on port 10999 of the computer where
the docker is running it and all isCOBOL thin client users can use that service.

Stopping the service

We can stop the container and terminate the execution of the
isCOBOL Application Server with this command:

Checking the docker process again we can see its status is “Exited”:

root@ubuntu:/home/myDocker/myApp# docker ps -a

What’s Next?

Look for our article in the next newsletter where we will discuss how to create Docker Volumes
as a mechanism for your persistent isCOBOL data in a container or shared between containers.

5

root@ubuntu:/home/myDocker/myApp# docker stop iscobolserver

Installing the isCOBOL Server using Docker

PORTS NAMES
0.0.0.0:10999->10999/tcp, :::10999->10999/tcp iscobolserver

CONTAINER ID IMAGE COMMAND CREATED STATUS
6e8c9e89ffb3 iscobol “/bin/sh -c ‘${ISCOB…” 3 seconds ago Up 2 seconds

CONTAINER ID IMAGE COMMAND CREATED STATUS
6e8c9e89ffb3 iscobol “/bin/sh -c ‘${ISCOB…” 28 minutes ago Exited (137) About a minute ago

 PORTS NAMES
 iscobolserver

6

A history of Veryant’s
software

The Release Overview book
in Veryant’s documentation
set includes highlights of the
new features introduced by
the current version, but it
also includes the highlights
on features introduced by
previous versions.

Did you miss a couple
of releases and want to
know what changed before
upgrading to the current
one?

Do you want to track how
a specific product evolved
from version to version?

Are you interested in
knowing when a specific
product was introduced?

The Release Overview
book is the best place
for this kind of reading.
The collection of Release
Overview documents in the
documentation ranges from
2015 to now:

6 years
of history!

Performance of print jobs have been improved in 2021R2, both as a result of
the async mode implementation thru the new configurations:

iscobol.print.spooler_async=true|false (default: true) to set the print job to
be run asynchronously
iscobol.print.pdf_async=true|false (default: false) to have the PDF print job to
be executed asynchronously.

and with better Application Server TCP packet handling when running in
ThinClient. This chart shows the gains of printing using the new 2021R2 release
compared to the previous 2021R1.

2021R1 New Features

WebClient 2021R1 Demo

DatabaseBridge (from the
archives)

Veryant’s Distributor’s Meeting
2021

2021R2 New Features

Veryant’s Load Balancer

Documentation
Highlights

NEW KNOWLEDGE BASE (KB) ARTICLES:

Can I define one or more data items based

on the definition of another one?

Modernizing your COBOL application by

using isCOBOL Compiler code injection

Why start using the OCCURS DYNAMIC?

How to save memory by replacing your fixed

arrays

Faster Printing in 2021R2

NEW YOUTUBE VIDEOS

HAVE YOU SEEN THIS?

All times are in seconds. Hardware details of client machine: Windows 10 Pro i7-
8550U CPU @ 1.80GHz 16GB
Hardware details of server machine: macOS Big Sur Apple M1 16GB.

https://support.veryant.com/support/signedin/documentation/isCOBOL2021R2/index.html#page/Release%20Overview/ReleaseOverview.03.1.html
https://support.veryant.com/support/signedin/documentation/isCOBOL2021R2/index.html#page/Release%20Overview/ReleaseOverview.03.1.html
https://support.veryant.com/support/signedin/documentation/isCOBOL2021R2/index.html#page/Release%20Overview/ReleaseOverview.03.1.html
https://www.youtube.com/watch?v=LgVH2-ewEns
https://www.youtube.com/watch?v=O46zoCh-w3g
https://www.youtube.com/watch?v=NkikL6iKLWA
https://www.youtube.com/watch?v=NkikL6iKLWA
https://www.youtube.com/watch?v=ChAtmvyy-4o
https://www.youtube.com/watch?v=ChAtmvyy-4o
https://www.youtube.com/watch?v=7tOTTSP3ULQ
https://www.youtube.com/watch?v=AhvoT1m8QOg
https://support.veryant.com/support/phpkb/question.php?ID=321
https://support.veryant.com/support/phpkb/question.php?ID=321
https://support.veryant.com/support/phpkb/question.php?ID=322
https://support.veryant.com/support/phpkb/question.php?ID=322
https://support.veryant.com/support/phpkb/question.php?ID=323
https://support.veryant.com/support/phpkb/question.php?ID=323
https://support.veryant.com/support/phpkb/question.php?ID=323

We have exciting news about the new capability to mix HTML/JavaScript
development with your isCOBOL desktop applications through WebClient. This is
useful

•	 to develop customized web pages with areas where isCOBOL applications can

run and interact with the encapsulating web page
•	 to develop isCOBOL desktop applications with custom web components

embedded in the application screen.

When encapsulateing your application in a web page, everything on the web side is done with
JavaScript using a container web page. The client side uses isCOBOL’s new IWC$ library
routines.

The isCOBOL WebClient now allows the interchange of JavaScript messages between the
isCOBOL desktop application and the underlaying web page, Your code will start and stop the
messaging engine using the new library routines IWC$INIT and IWC$STOP. The isCOBOL app
sends a message to the web page using the IWC$SEND routine. When the web page sends
a message to the isCOBOL app, it is received using the IWC$GET routine.

Here’s an example of how your would use those 4 routines:

7

78 78-iwc-crt-status value 1001.
77 data-to-send pic x any length.
01 iwc-struct.
 03 iwc-action pic x any length.
 03 iwc-data pic x any length.
 03 iwc-bytes pic x any length.

ACTIVATE.
 call “IWC$INIT” using 78-iwc-crt-status
SEND-TO-HTML.
 initialize iwc-struct.
 move “ComSample” to iwc-action
 move data-to-send to iwc-data
 call “IWC$SEND” using iwc-struct
READ-DATA-FROM-HTML.
 initialize iwc-action
 call “IWC$GET” using iwc-struct
 if iwc-action = “EXECUTE_PGM”
 call IWC-DATA
 end-if.
DEACTIVATE.
 call “IWC$STOP” giving return-code.

A giant leap forward for WEB enablement

This control is easy to use for both the COBOL programmer and the JavaScript programmer,
because there’s no language crossover – the programmers don’t have to use an unfamiliar
language. If the COBOL programmer wants to send a message from the IWC-PANEL GUI
control, they would use the MODIFY statement, and if they want to receive a message, they
would use the INQUIRE statement.

A sample program using the IWC-PANEL is in the
$ISCOBOL/samples/issamples/s-gui/IWC-PANEL.cbl program.

To learn more about these capabilities, you can

• look at the samples already mentioned

• read the documentation here.

• Watch a video demonstrating encapsulated WebClient here.

• Watch a demonstration of the new features in the 2021R2 New Features video here.

8

03 f-map iwc-panel
 js-name “f-map”
 line 5 column 2
 size 68 cells lines 15 cells
 value fmap-struct
 event procedure FMAP-PROC.

A giant leap forward for WEB enablement

You can find an in-depth example in the $ISCOBOL/samples/webclient/encapsulated/source
folder, which uses entry-points in IWC.cbl to respond to messages. Another sample is in
$ISCOBOL/samples/issamples/s-routines/IWC.

If, on the other hand, you want to include a web component written inHTML/JavaScript on your
isCOBOL application screen when run in the WebClient, you would use the new IWC-PANEL
GUI control. Here’s an example of that control’s screen section description:

https://support.veryant.com/support/signedin/documentation/isCOBOL2021R2/index.html#page/isCOBOL%20WebClient/Chapter1-WebClient.3.26.html
https://www.youtube.com/watch?v=O46zoCh-w3g
https://www.youtube.com/watch?v=7tOTTSP3ULQ

When this style is set, items can have multiple values instead of a single value.
Each value is displayed in a separate column. Columns are defined by the
Display-Columns property.

Example - Define a tree table view with 3 columns:

9

An New Style Updates and
Expands your Tree-View Controls

Take control of your temporary
file access performance by

storing your temporary data in
memory instead of on disk.

It is a regular practice in
COBOL applications to use

temporary sequential files. In
some cases accessing these

files could negatively affect the
performance of the applications
because the runtime needs to
go back and forth to access

these files where they are stored
on disk.

TEMPORARY
FILES IN
MEMORY

INPUT-OUTPUT SECTION.
FILE-CONTROL.
select my-file
 assign to address
 memory-area
....
WORKING-STORAGE SECTION.
77 memory-area
 pic x any length.

Fortunately, there is a method
to create and access those
temporary sequential files
in memory, which improves
your programs’ performance.
This solution is very easy to
implement: you just need to
define the file inside the program
as follows:

The “memory-area” variable will
contain all the records inserted
in the “my-file” sequential file,
making it faster to access.

For more information and a
sample program, see the KB
article here.

Simple print programs that produce a text-only output without calling any
specific printing library routine don’t set a specific font for the print job.

The font is left undefined so it’s printer duty to choose which font should be
used.

This might produce different output when printing on different printers as well
as undesired output when the chosen font is not a fixed pitch.

In order to avoid this kind of issue, you can set the iscobol.print.default_font
configuration property.

With this property you specify the font that should be used by default when
the program doesn’t force any font via printing library routines.

For example, in order to have Consolas size 12 as default, set:

iscobol.print.default_font= Consolas-12

How to change the Default Printer Font

screen section.
 ...
 03 screen-1-tv-1 Tree-View
 line 2.7
 column 3.4
 size 20.8 cells
 lines 29.1 cells
 height-in-cells
 color 144
 id 2
 table-view
 display-columns
 (1, 10, 15)

https://support.veryant.com/support/phpkb/question.php?ID=261

10

NEW CHROMIUM WEB-BROWSER
We’ve added a third web-browser implementation to accommodate complex Javascript

and CSS syntax

The Web-Browser control has always given you a choice
of two different implementations: the DJBrowser
component based on SWT or the JavaFX Webview
component. You could chose which implementation
by setting the iscobol.gui.webbrowser.
class configuration property.
However neither of these two implementations is fully
comparable to a real web-browser like Firefox, Chrome
or Edge.These two web-browser implementations are
good for rendering most html pages, but pages with
modern and complex Javascript or CSS syntax might
not work correctly.

These two web-browser implementations are good
for rendering most html pages, but pages with
modern and complex Javascript or CSS syntax might
not work correctly.
Therefore, we’ve added a third web-browser
implementation that you can activate via the
iscobol.gui.webbrowser.class configuration property:
JxBrowser. This is a powerful web-browser based
on Chromium, able to render all the html content the
same way as Chrome and Edge browsers.
The JxBrowser can be downloaded from the
TeamDev website. See here in the isCOBOL
documentation for more details.

Why Start Using the OCCURS DYNAMIC Syntax
Every COBOL application has many programs containing
definitions with OCCURS in Working Storage or Linkage
sections. These arrays are usually of a fixed size to
accommodate the maximum number of references possible in
the table. The result is that the memory consumed for the array
is fixed, even when the program doesn’t need to use all the
occurrences. For example, this definition:

will allocate the memory for all 900 occurrences at the program
startup, even if the program will use only few references.

To reduce the memory consumed by allocating only the
memory really necessary, you can change your code to use a
dynamic occurs. For example:

 78 max-element value 900.

 01 w-group.

 03 w-element occurs max-element.

 05 w-cod pic 9(3).

 05 w-desc pic x(20).

 05 w-note pic x(100).

01 w-group.

 03 w-element occurs dynamic capacity max-element.

 05 w-cod pic 9(3).

 05 w-desc pic x(20).

 05 w-note pic x(100).

For more information and sample programs demonstrating
how the dynamic arrays work, see the KB article here.

https://support.veryant.com/support/signedin/documentation/isCOBOL2021R1/index.html#page/User%20Interface/Chapter2_ControlsReference.4.1556.html
https://support.veryant.com/support/phpkb/question.php?ID=323

As always, 2021R2 contains multiple
compatibility additions – as we continue
to make your conversion process as
smooth, quick, and pain-free as possible.

veryant.com

Corporate Headquarters
6390 Greenwich Dr., Suite 225
San Diego, CA 92122 - USA
Tel (English): +1 619 797 1323
Tel (Español): +1 619 453 0914

For supported customer email
us at support@veryant.com

If you would like Veryant to
contact you to schedule a
technical product briefing,
email us at info@veryant.com

If you would like Veryant to
contact you for special quote
or sales assistants email us at
sales@veryant.com

European Headquarters
Via Pirandello, 29
29121 - Piacenza - Italy
Tel: +39 0523 490770
Fax: +39 0523 480784
emea@veryant.com

Contact Us

11

Veryant Newsletter Issue 02 2021

©2021 Veryant - All Rights Reserved

http://www.veryant.com/
mailto:support%40veryant.com?subject=
mailto:info%40veryant.com?subject=
mailto:sales%40veryant.com?subject=
mailto:emea%40veryant.com?subject=
https://twitter.com/VeryantCOBOL
http://link.rm0007.net/go/FKykRqImzYCrNnQN7BB6hw2/
https://www.facebook.com/veryantCOBOL/
https://www.youtube.com/channel/UCdB0CZahezDc87F7UIvTXAA

