
1

I S SUE

06 2
0

2
2

TRIANNUAL
JOURNAL OF
VERYANT AND
isCOBOL

2022 R1 and more

THIS ISSUE

2022R1 has taken isCOBOL a huge step forward in keeping up-to-
date and relevent in larger, modern environments

e now support all the LTS (long term support) releases of Java; Java
1.8, Java 11 and Java 17. You can see the release date and end of
support dates for Java versions here The isCOBOL IDE is updated
to use the newest stable Eclipse base. 2022R1 is certified to run on

Windows 11 with Java 11 or 17. We’ve added clustering to the WebClient, so
now you can balance the WebClient processing load across multiple servers.
Look for a video demonstrating how to do this on our YouTube site, here.
2022R1 has a few different ways to expand your configuration file handling. You
can piggy-back one file to another with iscobol.conf.copy=<filename>.
You can code to reset all variables to their original values, or set them to values
stored in a file, with C$CONFIG. Handling bitmaps and fonts that go with your
application is easier now with COPY RESOURCE syntax to include them in your
classes.
Avoid hanging background processes by setting iscobol.display.message.timeout
so a message box closes automatically. As usual, we have lots of GUI control
enhancements, including many for the hamburger menu, adding searching, its
own layout manager and several other specializations to this new type of menu
that works well on small screens. You can set the main window to darken when
you display a modal window that demands the user’s attention. These are just
some of the new features in 2022R1. You can get more information about all of
them in the release documentation and video.

1. 2022 R1 2. Keeping your COBOL 3. IDE Icon Map 4. Having a Persistent

Volume for isCOBOL Server in a Docker | Have you have seen this? 8. COBOL/

Web Integration 9. Symbol Font Advantages| Documentation Highlights |

Customizing Default Icons 10. Use the IDE to run your remote batch programs |

Undecorated Windows | Where are my licenses!?!

PLEASE JOIN US ON

Twitter, LinkedIn, or
Facebook to up-to-date
with Veryant’s news

Watch our demonstration
videos and Subscribe to
our YouTube Channel

NEWS

W

JOIN US AT
SCALE 19X IN
LOS ANGELES
JULY 28-31, 2022

The largest community-run
open-source conference in North
America is back, and we’re setting
up our booth as a sponsor.

Stop by and see us for a free gift!
More information here

https://en.wikipedia.org/wiki/Java_version_history
https://www.youtube.com/watch?v=N9M70_u1lrg
https://www.veryant.com/products/release.html
https://www.youtube.com/watch?v=GNpPhucbTBE
https://www.socallinuxexpo.org/scale/19x
https://twitter.com/VeryantCOBOL
http://link.rm0007.net/go/FKykRqImzYCrNnQN7BB6hw2/
https://www.facebook.com/veryantCOBOL/
https://www.youtube.com/channel/UCdB0CZahezDc87F7UIvTXAA

2

R ecently, many people have talked about COBOL
and “ancient” applications, and many outside the
COBOL industry don’t understand why something

wasn’t done about the situation before the current crisis.

But those of us who use COBOL every day know it’s “easier
said than done”. Not only does your COBOL application
work, it works hard every day. Thinking about changing an
essential system with decades of modifications, industry
specific applications, with millions of lines of code, is no
easy task. Deciding which direction to go is daunting, and
I’d dare any decision maker to say they haven’t succumbed
to “analysis paralysis” on the subject at least once.

The decision makers responsible for deciding what to do
with their legacy COBOL programs are at a crossroads.
There are two paths to take: keep the COBOL and update
it, or throw it away and start over again with a generic
package or a total rewrite. Once you start down one path,
it’s very difficult to change without going all the way back to
the crossroads and starting over

My son once cleaned his room by taking everything out of
it, then putting everything back again. His theory was that
he’d only put back exactly what he needs to, and it would
be better organized. And that’s basically what happened.
However, it took him a whole weekend, so he had to sleep
on the couch for two nights during the process and the
whole house was a mess during that time. And eventually,
his room became just as messy as it had been because
things he thought he didn’t need keep creeping back into
his room over time.

Replacing your COBOL with a generic package or totally
rewriting your application is a little like his “slash and burn”
method of room cleaning. Yes, you can end up with
something bright and shiny. But you’ll still have to touch
every part of your COBOL application to try to copy its
functionality.

And then either pay an outside vendor a lot of money to

modify their generic package to fit your business, or wait
years for your programmers to write an application from
scratch that will replace something it took decades to fine
tune.

Updating your existing COBOL comes with problems too,
such as who’s going to maintain the COBOL if all your
COBOL programmers are retiring? And how do you tell
your customers that you have a cutting-edge application
written in COBOL? How do you pick the right COBOL
vendor with the right set of tools to make your update
successful?

That’s where Veryant fits into the decision. Our IDE is
based on an industry standard IDE – Eclipse, so most
programmers are familiar with the environment already.
COBOL is a relatively easy language to learn, and drawing
screens and coding in COBOL is a snap when they use the
integrated IDE tools we’ve created.

If you want to minimize your programmer’s interactions with
COBOL, it’s easy to create individual REST services and
push your COBOL into a background “black box”, and use
a more modern language better fitted to graphical displays,
like Java, JavaScript, or Python for your user interface
code.

isCOBOL compiles your COBOL into Java code, then
compiles again into a Java class. As far as your customers
or users can tell, you have a Java application.

Perhaps the most important decision of your company
may be what to do with your COBOL. I hope you seriously
consider keeping it. Call us for a discussion, demonstration,
or code analysis.

An argument for keeping your COBOL rather than starting
over, by Daniel Cardenas, Business, Development Director of
Latin America

What are you going to do with your COBOL?

“Not only does your COBOL application
work, it works hard every day.”

3

isCOBOL project

isCOBOL library: lists the version
of isCOBOL library used by the project

isCOBOL screen program

isCOBOL WOW program

Screen designer section for Screen program
or Forms list for the WOW program.

Screen designer for Screen program
or Form designer for WOW program

Report designer section,
containing all the reports of each program.

Report designer

Working storage and Local storage designer

Linkage section designer

File section containing all the datasets (file) of each program.

Dataset (the representation of a file used inside the program)

Event paragraph for Screen program
and WOW program

Icon decorations

Each icon can be decorated

with some small symbol to

show extra information.

A compiler warning will add a

yellow triangle on the low left

corner. For example

the source icon becomes

and the folder .

A compiler error will add a red

cross on the low left corner.

For example the source icon

becomes

and the folder .

The error icon will override the

warning icon.

isCOBOL IDE Icon
The IDE uses different icons in the 3 sections of the IDE explorer in
order to represent the status of the project. Here’s your map
to understanding those icons.

All sections

Structural view

Icon decorations

If the file or the folder are

not physically present in the

project folder, but they are

linked from another location,

a link symbol is added in

low-right corner of the icon.

For example the source icon

becomes and the folder

These are the isCOBOL

decorations. You might see

others added by Ecplise plug-

ins, like SNV.

4

Empty project folder

Project folder with some files in it

List folder with some files in it

Copy file

List file

Program source code

Program id: under each source code
there is this icon. This represents the generated class

Class id: this icon has the same meaning
as above, but for a class id

The container of the methods of a class id

A method of the class-id

Dataset. The representation of the dataset (file),
one for each file in the program

File description (FD) designer

File key designer

File i-o handling designer

File EFD designer

File event paragraph designer

isCOBOL IDE Icon
File view

Data view

 New YouTube Videos

isCOBOL’s Profiler- how it works and a demonstration

isCOBOL’s Code Coverage Utility

What’s new in 2022R1 – with demonstration

All about isCOBOL Licensing

Customizing isCOBOL

WebClient Clustering

New Knowledge Base (KB) Articles

How can you wait for several threads to finish?

How to use font-based icons in isCOBOL GUI programs

Can I use COBFILEIO to give access to my c-tree files to a

Java program?

Modernize your character application

Have You Seen This?

https://www.youtube.com/watch?v=HtyF_qcWFHY&feature=youtu.be
https://www.youtube.com/watch?v=vtiIlIYjGOQ&feature=youtu.be
https://www.youtube.com/watch?v=GNpPhucbTBE
https://www.youtube.com/watch?v=R6ScVpdT1XM
https://www.youtube.com/watch?v=4kJAbJ5rlZs
https://www.youtube.com/watch?v=N9M70_u1lrg
https://support.veryant.com/support/phpkb/question.php?ID=324
https://support.veryant.com/support/phpkb/question.php?ID=325
https://support.veryant.com/support/phpkb/question.php?ID=326
https://support.veryant.com/support/phpkb/question.php?ID=326
https://support.veryant.com/support/phpkb/question.php?ID=327

5

Having a Persistent Volume for isCOBOL Server
in a Docker

Prerequisites

The prerequisites on a Linux 64bit computer (where the docker is built) are :
• The Docker engine (https://docs.docker.com/engine/install/)
 installed from a repository
• A licensed isCOBOL SDK environment
• An isCOBOL Server running in Docker having ISAPPLICATION sample setup and running. See

instructions in the first article of the series, here.

Manage data in a Docker

As default behavior, all files created inside a container are stored on a writable layer. This means that data
doesn’t persist when the container is removed and it’s pretty complex to make data available to another
process that run outside container. Also, the container’s writable layer is strongly coupled with host
machine where container is running and it’s not simple to move that data to another host. Last but not
least, an additional extra abstraction reduces performance as compared to using data volumes, which
write directly to the host filesystem.

Docker system provides two options for containers to store files on the host machine so that the files are
persistant even after the container stops: volumes, and bind mounts.

Docker also provides to containers a way to store files in the memory of the host machine called ‘’tmpfs”.
Since host machine memory is used, obviously these files are not persistent but are still useful to get the
best performance or for security reasons to protect data.

The second of a three part series on isCOBOL and Docker
Containers, this article shows you how to use persistent
data in your container. Here’s a step-by-step guide from
Senior Support Engineer, Valerio Biolchi

https://docs.docker.com/engine/install/
https://www.veryant.com/resources/newsletter/VeryantNewsletter_05.pdf

6

Having a Persistent Volume for isCOBOL Server in a Docker

Volumes are stored in the host filesystem where Docker is running. For example, on “/var/
lib/docker/volumes/.” As a good practice non-Docker processes should avoid modifyng this
filesystem. Volumes are the preferred mechanism for persisting data generated by and used
by Docker containers.

Bind mounts were the original option for persistent data in a Docker. They can be stored
anywhere in the host filesystem. Non-Docker processes on the Docker host or a Docker
container can modify them at any time. As a good practice, you should use volumes where
possible, however in some cases you might consider to using bind mounts between Docker
processes and the Host machine; for example if you need to share a configuration file
between the host machine and containers.

Using Volumes

We can create a volume by using the “create” subcommand and passing a volume “name”
as an argument:

root@ubuntu# docker volume create myAppVolume

The “ls” subcommand shows all the volumes known to Docker:

root@ubuntu# docker volume ls

To display detailed information on one or more volumes, we use the “inspect” subcommand:

root@ubuntu# docker volume inspect myAppVolume

We should note that the driver of the volume describes how the Docker host locates the
volume. Volumes can be also defined to be located on remote storage via NFS. In above
example, the volume is in local storage.

DRIVER
local

VOLUME NAMES
myAppVolume

[
 {
 “CreatedAt”: “2022-04-21T01:18:45-07:00”,
 “Driver”: “local”,
 “Labels”: {},
 “Mountpoint”: “/var/lib/docker/volumes/myAppVolume/_data”,
 “Name”: “myAppVolume”,
 “Options”: {},
 “Scope”: “local”
 }
]

Start a Container with a volume

If you start a container with a volume that does not yet exist, Docker creates the volume for you. The
following example mounts the volume “myAppVolume” into “:/isapplication/data” in the container
docker run --name iscobolserver -v myAppVolume:/isapplication/data -p 10999:10999
-d iscobol

The -v option contains three components, separated by colons:
 Source directory or volume name
 Mount point within the container
 (Optional) ‘ro’ if the mount is to be read-only

Inside the container you should have the ISAPPLICATION setup with a “config.properties” configuration
file. The file should include iscobol.file_prefix, the property that defines the directory where COBOL
file are created and found, set to the mount point of the defined volume. For example:

iscobol.file_prefix=/isapplication/data

After Docker container execution, you will find COBOL index data files within the physical folder
named “/var/lib/docker/volumes/myAppVolume/_data”.

Docker File

Here’s the dockerfile contents used in the previous docker article, for reference:

7

Having a Persistent Volume for isCOBOL Server in a Docker

Dockerfile

FROM openjdk:11
MAINTAINER Veryant
ENV ISCOBOL=/var/isCOBOL2022R1
ENV ISCOBOL_CLASSPATH=${ISCOBOL}:${ISCOBOL}/isapplication
ENV ISSERVER_OPTS=”-c ${ISCOBOL}/isapplication/config.properties”

RUN mkdir ${ISCOBOL}

COPY iscobol.properties ${ISCOBOL}/iscobol.properties
COPY isCOBOL_SDK2022R1/lib ${ISCOBOL}/lib
COPY isCOBOL_SDK2022R1/bin/isserver ${ISCOBOL}/bin/isserver
COPY isCOBOL_SDK2022R1/sample/isapplication ${ISCOBOL}/isapplication

WORKDIR “${ISCOBOL}/isapplication”

CMD ${ISCOBOL}/bin/isserver run

8

T he IWC-PANEL is a container control that you can use in
your COBOL application to include web components in
your screen when your program is encapsulated in a web

page. The IWC-PANEL control lets you use COBOL MODIFY
and INQUIRE verbs to interact with the web component.
In general, an iwc-panel component on the screen section would
look like the following:

 03 f-map iwc-panel
 js-name “f-map”
 line 5 column 2
 size 68 cells lines 15 cells
 value fmap-struct
 event procedure FMAP-PROC.

The JS-NAME property holds an identifier that will be sent to
the web page upon creation, so that the corresponding web
component can be created.
The control’s VALUE property holds the message structure used
to send actions to the panel in the web page, so you would use
the MODIFY statement on that property to send a message to
the web page. On the other hand, if the web page executes a
performAction on the panel, the event procedure of your COBOL
program will be called and an INQUIRE on the value property will
return the message that has been sent.

TELL THE WEB PAGE TO CREATE THE COMPONENT

For every IWC-PANEL in a form, a callback in the web page is called,
with the details necessary to perform component initialization.
The webclientInstance.options .compositingWindowsListener
object defines callbacks for various events, such as creating the
IWC-PANEL and windows opening and closing.
An IWC-PANEL creation will trigger the windowOpened callback,
and a reference to the IWC-PANEL is passed as function
argument. The callback can check the .name property to
determine which control has been created and react accordingly.
Here’s a JavaScript code snippet showing the windowOpened
handling:
 compositingWindowsListener:{
 windowOpened: function(win) {
 if (win.name === ‘f-map’){
 createMap(win)
 }
 },
 },

SEND INFORMATION TO WEB PAGES

The following code snippet shows how the COBOL program
interacts with the web page. A message is created using OOP
to a jsonStream, then passed to the JavaScript with a simple

COBOL “modify f-map value …” statement

SHOW-ON-MAP.
 move “selectOffice” to fmap-action
 move offices(office-index) to selected-office
 set objJsonStream to jsonStream:>
 new(selected-office, 1);;
 set strbuffer to string-buffer:>new
 objJsonStream:>writeToStringBuffer(strbuffer)
 move strbuffer:>toString to fmap-data
 modify f-map value fmap-struct.

The Javascript receives and parses the data in this snippet:
 if (actionName === ‘selectOffice’){
 let office = JSON.parse(data);
 selectOffice(office);
 }

GET INFORMATION FROM THE WEB PAGE

A change on the map triggers a performAction on the web page
which is caught by the COBOL program. The program executes
the control’s event procedure, FMAP-PROC, which uses an
“inquire f-map value …” statement to get the event
The Javascript sent the information in this code snippet:
 infoWindow.addListener(‘closeclick’, () =>{
 if (mapControl){
 mapControl.performAction(
 {actionName: ‘pinClosed’,

 data:marker.title});
 }
 });

 if (mapControl){
 mapControl.performAction(
 {actionName: ‘pinClicked’,
 data:marker.title});
 }

And the COBOL program processed it in the control’s event
procedure.

FMAP-PROC.
 if event-type = ntf-iwc-event
 inquire f-map value in fmap-struct
 evaluate fmap-action
 when “pinClicked”
 move fmap-datato sel-description
 ...
 when “pinClosed”
 ...
 end-evaluate

 end-if.

In the sample/issamples folder of your isCOBOL installation
we provide a complete project that shows how to integrate a
Google map component in a COBOL application, and how to
interact with it. Directions for running the SAMPLES program
encapsulated in a web page – a requirement to use the IWC-
PANEL, is in the README.md document found in the issamples
folder.

The Power of the IWC-PANEL component.
COBOL/Web Integration

9

Common JDBC connection
settings

You can manage your data
in every JDBC-compliant
database with isCOBOL.

We offer two ways for you to do
this. It can be done by writing
embedded SQL (ESQL) code
in your program or you can use
our DatabaseBridge product to
write the ESQL for you.

In both cases, you ‘ll need to
add the proper JDBC driver
library to the Classpath and
configure the JDBC connection
string.

To make it easier for you
to do that, the isCOBOL
documentation includes a
collection of JDBC drivers and
connection strings for the most
common relational databases
here.

Using the WBITMAP-LOAD-SYSTEM-FONT and WBITMAP-LOAD-
SYSTEM-FONT-EX opcodes

Symbol fonts are font libraries. Here are some of the advantages of using symbol fonts
for your images rather than external, separate, image files.
Traditional icons lose quality when you increase or decrease their size, or open and save
them in a photo editing program. Icon fonts used by these W$BITMAP opcodes store
images in a vectorial format and don’t lose quality. This means that with symbol fonts:

• If you need more than one size of an icon (ex: 32 and 16 pixels), you don’t have to
create and maintain two separate icon files to keep the same quality.

• When you add an icon to the end of a strip you keep the quality of the strip by adding
code, rather than having to open the strip in a photo editing program, degrading
quality.

• If your application has two different schemas (ex: light and dark) you can set these
properties in your code, instead of creating two sets of images with different colors.

• Symbol fonts offer a huge variety of images. For example Font Awesome, one of
the most popular system fonts, has over 7,000 images.

Here’s an example of code that changes the size and color scheme of a defined strip:

If use-big-image
 move 32 to imageWidth
else
 move 16 to imageWidth
end-if

If dark-theme
 move -13421772 to imageColor
else
 move -6710886 to imageColor
end-if

CALL “W$BITMAP” USING
 WBITMAP-LOAD-SYMBOL-FONT
 fontHandle
 charactersSequence
 imageWidth
 imageColor
 GIVING bitmapHandle.

You can read more about how system fonts work in our KB article here.

Documentation
Highlights Symbol Font Advantages

The isCOBOL Framework
includes a series of default
icons that are used in various
places of the GUI. These
icons are PNG and GIF files
stored in the com.iscobol.gui.
client.swing package in the
iscobol.jar library. It’s possible
to customize these icons by
adding a library (or a folder)
with the same package before
iscobol.jar in the CLASSPATH.
Suppose that you wish to
customize the funnel icon
shown on the Grid’s heading
when either the FILTERABLE-
COLUMN style or the FILTER-
TYPES property is set.

You just have to place a file named funnel.png in
a folder structure named com/iscobol/gui/client/
swing and then create a jar from it, e.g. Copy
this jar to the “jars” directory of your isCOBOL
SDK and, from now on, when you run a COBOL
program using the isCOBOL SDK, you will see
your custom funnel on grid headings. Refer
to the online documentation here for the list
of icons that you can customize and for more
details about the creation of your custom jar.

Customizing
Default Icons

https://support.veryant.com/support/signedin/documentation/isCOBOL2022R1/index.html#page/SDK%20User's%20Guide/Chapter7-ProgrammingGuides.11.04.html
https://support.veryant.com/support/phpkb/question.php?ID=325
https://support.veryant.com/support/signedin/documentation/isCOBOL2022R1/index.html#page/User%20Interface/Chapter1_Introduction.4.24.html

Your IDE can compile and execute your code locally or remotely, with the IDE’s
remote server. If you have batch processes that you need to run on a remote
server, with a little setup you can launch them from the IDE instead of directly on
the server.

Once you start isCOBOL’s Application Server with the special -ide switch on the
remote server, you create a project and define the remote server in your IDE’s
workspace, then link, or bind them together. Once you’ve done that, you have
more compile and runtime modes – in addition to the normal “run” you will find
“@<your server name>.Run” for instance.

You can use the remote server to run more than batch programs. Programs
with a user interface run well too, because the remote server uses thin client
technology.

Details are here in our documentation, and support is just an email away!

10

Use the IDE to run your remote
batch programs

What they are and when it
makes sense to use them.

When the undecorated style
is set, native decorations like
the frame and title bar are not

shown.

This windows style is useful
in the WebClient environment

where you might want to
remove the title bar of the

window so the program screen
will look like a common HTML

form or is embedded in a page.

You can use this style in
floating, independent, and
initial (standard) graphical

windows. It has no effect on
Docking and MDI windows, and
Notification windows are already

undecorated by default.

Here’s a decorated window:

And here’s the same window
with the “undecorated” property.
Notice the title bar and the blue

edging (frame) are gone.
.

UNDECORATED
WINDOWS

The runtime framework (and other isCOBOL products) looks for licenses in
a file called “iscobol.properties” in 4 places, and a 5th place and name you
specify. The most recent license found is used. Here’s the list of locations
and order searched.

To see what licenses the runtime sees, run

iscrun -license

You’ll get a list of all the “iscobol.properties” files found and what licenses
were picked up and in what order.

Where are my licenses!?!

1.
2.
3.
4.
5.

/etc/iscobol.properties
<userhome>/iscobol.properties
<java classpath>/iscobol.properties
-c <any path and name passed from the command line>
$ISCOBOL/iscobol.properties

https://support.veryant.com/support/signedin/documentation/isCOBOL2022R1/index.html#page/isCOBOL%20IDE/Chapter1-isCOBOL_IDE.3.096.html
mailto:support%40veryant.com?subject=IDE%20Remote%20Server%20Question

As always, 2022R1 contains multiple
compatibility additions – as we continue
to make your conversion process as
smooth, quick, and pain-free as possible.

veryant.com

Corporate Headquarters
6390 Greenwich Dr., Suite 225
San Diego, CA 92122 - USA
Tel (English): +1 619 797 1323
Tel (Español): +1 619 453 0914
info@veryant.com

For supported customer email
us at support@veryant.com

If you would like Veryant to
contact you to schedule a
technical product briefing,
email us at info@veryant.com

If you would like Veryant to
contact you for special quote
or sales assistants email us at
sales@veryant.com

European Headquarters
Via Pirandello, 29
29121 - Piacenza - Italy
Tel: +39 0523 490770
Fax: +39 0523 480784
emea@veryant.com

Contact Us

11

Veryant Newsletter Issue 06 2022

©2022 Veryant - All Rights Reserved

http://www.veryant.com/
mailto:info%40veryant.com?subject=
mailto:support%40veryant.com?subject=
mailto:info%40veryant.com?subject=
mailto:sales%40veryant.com?subject=
mailto:emea%40veryant.com?subject=
https://twitter.com/VeryantCOBOL
http://link.rm0007.net/go/FKykRqImzYCrNnQN7BB6hw2/
https://www.facebook.com/veryantCOBOL/
https://www.youtube.com/channel/UCdB0CZahezDc87F7UIvTXAA

