
1

T

ù
I S SUE

132
0

2
5

QUARTERLY
JOURNAL OF
VERYANT AND
isCOBOL

2025R1 – Barcodes
and more!

THIS ISSUE

We’ve made barcode and QR code generation easier with
isCOBOL Evolve 2025R1.

\

This newsletter is chock-full
of helpful information, includ-
ing:

• The third and last part
of a 3-part series on the
debugger as well as a list
of common debugging
techniques,

• Tips on significantly
improving performance
of your DatabaseBridge
RDBMS table access,
and

• A peek at what’s coming
in a future version.

1. 2025 R1 - Barcodes and more! 2. Working in debugger, part 3 - Technology

Preview 3. Have you seen this? 4. How to read records faster with Database

Bridge 6. Documentation Highlight - Debugging Techniques 7. Last page

NEWS

he newest isCOBOL Evolve adds a new GUI Control,
barcode and QR-code generation, improved
debugging and more.

The new split-pane control gives the user control to resize
left and right (or top and bottom) panels. It’s easy now to
generate 16 different styles of barcodes and QR codes to
send to a third party, print out, or display on your screen.

And we’ve started our revamp of our graphical debugger
with improved navigation and color-coded error
messages.

isCOBOL Evolve has had a DCI dll interface to DBMAKER
for many years, but with 2025R2 we’ve added this popular
database to our stable of databases accessible with the
Database Bridge, giving you a 100% Java access solution.

Are you running an older version of isCOBOL? We’re here to help you

upgrade to stay with a supported versions and take advantage of new

technology. Check out our end-of-life policy here.

https://www.veryant.com/eol.html

2

Working in the Debugger

Veryant will soon launch its
NoSQL Bridge, a lightweight
HTTP/HTTPS interface for
direct access to ISAM data,no
SQL layer required. This tool
allows you to expose ISAM
files to web applications while
preserving their native format,
eliminating the need for inter-
mediate programmatic data
transformation.

By decoupling the data layer
from the web server and acces-
sing it via Veryant’s secure file
server, the architecture enhan-
ces data security. The RESTful
API can be deployed using the
built-in Jetty server or exter-
nally via a .war file on servlet
containers like Apache Tomcat.
JSON responses are automa-
tically structured based on the
field definitions in the EFD file
(<filename>.xml), generated
using the -efd compiler option.

For more information contact
your sales representative at
sales@veryant.com.

The final installation of a three part deep-dive into the isCOBOL GUI debug-
ger will cover some of the advanced functionality that will help you easily
understand your program, how it runs and what it’s doing..

The debugger is packed with powerful features designed to give you real-time
insights as you step through your code. One standout feature is the Current
Variables panel, which displays the variables involved in the current line of
execution, followed by those from the previous line—making it easy to track
changes and understand program flow.

You can set a conditional monitor to stop when a variable changes it’s value, or just
when it matches some value or values.

TECHNOLOGY
PREVIEW

3

 Newest Video:

It’s important to keep up with new features and changes in isCOBOL Evolve, even
if you don’t intend to migrate to that version. This video discusses the new 2024R2
features and additions to isCOBOL products.

And this one covers the newest 2025R1 release enhancements. Both include a
demonstration of some of the features.

 New KB Articles:

How to improve the performance of your application by making your Tab-Control a container.

How to identify and kill “orphan” Application Server connections.

Have You Seen This?

Working in the Debugger
Opening your variable
in Quick Watch gives
you even more power;
you can add it to the
Watched Variables
area, modify the value
on the fly, or add it as
a monitor. The Quick
watch area displays
your variable structure
in a tree layout auto-
matically.

While navigating your
code in the debugger, it’s common to jump between different sections—examining
paragraphs, variable structures, and more. This can make it easy to lose track of
where you are or where the current execution line is.

To help with this, the debugger includes three navigation arrows: Backward,
Forward, and Current Line. These tools
let you quickly return to previous lo-
cations, move forward again, or jump
straight to the current line of execution.
The debugger keeps a history of your
navigation, so you can retrace your steps
with ease..

PLEASE JOIN US ON

Twitter, LinkedIn, or

Facebook for up-to-date
with Veryant’s news

Watch our demonstra-
tion videos and Sub-
scribe to our YouTube
Channel

https://youtu.be/LJgDs_O3eTo?si=MtNl1t3bsHJdqd2b
https://youtu.be/A44QB7rwvnY?si=vqDujI51g4OXI4sD
https://support.veryant.com/phpkb/article.php?id=350
https://support.veryant.com/phpkb/article.php?id=351
https://support.veryant.com/phpkb/article.php?id=349
https://twitter.com/VeryantCOBOL
https://www.linkedin.com/company/veryant-llc
https://www.facebook.com/veryantCOBOL/
https://www.youtube.com/channel/UCdB0CZahezDc87F7UIvTXAA

4

How to read records faster with
isCOBOL Database Bridge

Let’s use an example with an indexed file containing a primary key of 3 segments and a flag field that is not part of
any key;

In our example database, the file contains over 1,000,000 records, but only 100 of them have fk1-cod = 120 and
fk1-year = 2021, and only 10 records in these 100 have file-flag = “Y”. Our goal is to extract these 10 records. The
COBOL logic to to do that might look like the following:

Because there are three segments in the key, COBOL rules say that the above START statement will read the file
using these three steps in order to get a good start:
• all the records that have fk1-cod=120 and fk1-year = 2021 and fk1-prog > 0
• all the records that have fk1-cod=120 and fk1-year > 2021
• all the records that have fk1-cod > 120

The DatabaseBridge needs to mimic these three steps by performing three separate SELECT queries and gene-
rate three result sets that could potentially contain thousands of records each. The more key segments, the more
queries and result sets, with each query extracting more record than the previous one. READ NEXT operations
fetch these result sets. When a resultset has been processed, the next one is processed. When all resultsets have
been processed, the end-of-file condition is raised. The same logic applies to READ PREVIOUS operations
.
Easydb-limit_dropdown configuration

In our example COBOL code, the IF statement that exits from the PERFORM cycle when the year is no longer
equal to 2021 will avoid the execution of the third query, but the second query will still be performed and we don’t
need it. Only the first query should be performed for our purposes.

The isCOBOL Database Bridge helps you access relational databases while using standard COBOL I-O
statements, with no or minimal changes to the existing code that you use to work on ISAM files. However,
there can be a cost in performance when accessing a large number of records, especially on the reading of
records using START and READ statements. In this article we’ll talk about how these statements are simulated
on the relational database and what we can do to optimize them.

5

To instruct the Database Bridge to use only the first query (the one that checks all the key segments), you can set
the easydb.limit_dropdown configuration to 3 before the START statement.

Note that this setting will be enabled from now on, so in order to avoid affecting future START statements it’s good
practice to remove it after the START has been performed.

Edbi-where-constraint

After reducing the number of queries to one we can improve this query by adding additional filters. We know that
our program is looking only for those records that have file1-flag = “Y”, but the code asks for all the records and
filters them in the COBOL program. It would be faster to have the database do this filtering and return only the
valid records.

You can add this filtering criteria to a WHERE clause of the DatabaseBridge query with the edbi-where-constraint
external data item. In our example we will add “FILE1_FLAG= ‘Y’” to the where constraint data item.

Note that like the dropdown limit, this setting will be enabled from now on so in order to avoid affecting future
START statements it’s good practice to clear the external data item afer the START has been performed.

These changes results in 6 additional statements in your code, with no refactoring, and at runtime the new code
will perform much faster with the DatabaseBridge. Here’s what your new code would look like:

There are many tips in our Performance Tuning guidelines documentation for increasing performance when using
the DatabaseBridge, such as having your application classes and database on the same machine to remove
network latency and converting some COBOL I/O to ESQL in a few key places. You can find them all here.

How to read records faster with isCOBOL Database Bridge

https://support.veryant.com/documentation/2025_R1/documentation/#page/Appendices/appendixl_PerformanceTuning.15.15.html

6

Fully understand the problem.

We often make assumptions about

where or what the error is based on

a quick description of the outcome.

Keep an open mind and make sure

you have a good grasp of the problem

before trying to fix it.

Backtracing

Debug backwards, starting from the

point where the problem first began.

You will probably set and unset many

breakpoints and run your application

multiple times as you do this.

Use the debugger

isCOBOL comes with two debuggers,

one integrated in the IDE and one you

can use from the IDE or the com-

mand line. isCOBOL’s debugger is a

graphical tool, but if you’re debugging

a process running in a non-graphical

environment, you can easily run the

isCOBOL debugger remotely.

Breakpoints and stepping

Set a breakpoint in the debugger, or

create a monitor of a variable so that

the debugger stops when the monitor

changes or reaches a specified value.

Step through the code line by line,

skipping paragraphs and programs

when they aren’t part of the problem.

Isolating the code

Once you find the problem, or at least

the problem code, it’s almost always

better to isolate this code in a separate

program for testing. Cut and paste

code to a new program, or comment

out blocks of code at a time to see

which block causes the problem.

Rubber ducking (sometimes called

plastic programming).

Explain the problem to someone else,

even if the someone else is a fictional

character. Talking the problem through

or writing it down forces you to think

critically about it, giving you new insi-

ghts and solutions.

Log analysis

Create log files and read through them.

There are different logging levels in

isCOBOL, but a good one to start with

is 15. Try adding this to your command

line:

Take breaks

Sometimes you end up going “down

the rabbit hole” when debugging a

problem, and it helps to take a step

back, clear your head, and start over

again.

Contact Veryant technical support

(support@veryant.com) BEFORE you

get too frustrated. We’re here to help.

isCOBOL Debugging
Techniques
Each COBOL developer has a routine for that most-common of
tasks, debugging a program. Here are some common techniques
that we suggest here at Veryant. Let us know if you have any other
methods that you use.

Which Version Is This Message
Referring To?

Many informational and error
messages displayed by isCOBOL
include build and version num-
bers, but not the corresponding
release version. For example,
consider the output of the iscrun
-info command, which might show
something like “compiled with
isCOBOL build #1145, minimum
required #1142.” Or take an error
such as:

“PROGRAM has been compiled by
a more recent version of the Java
Runtime (class file version 55.0);
this version of the Java Runtime
only recognizes class file versions
up to 52.0.”

Another example is a client/server
mismatch:

“Client release 74 is incompatible
with Application Server 99.”

What Java or isCOBOL release do
these numbers refer to?

To resolve this, the documentation
provides a mapping of version and
build numbers to their correspon-
ding isCOBOL releases. You can
find this list in isCOBOL Evolve :
Appendices : Version numbers.

DOCUMENTATION
HIGHLIGHT

 iscrun <other command line switches>
 -J-Discobol.logfile=c:\temp\mylog.txt
 -J-Discobol.tracelevel=15 <program name>.

mailto:support%40veryant.com%29?subject=
https://support.veryant.com/documentation/2025_R1/documentation/index.html#page/Appendices/appendixp_VersionNumbers.html
https://support.veryant.com/documentation/2025_R1/documentation/index.html#page/Appendices/appendixp_VersionNumbers.html

As always, the newest isCOBOL Evolve
release contains multiple compatibility
additions – as we continue to make your
conversion process as smooth, quick,
and pain-free as possible.

veryant.com

Corporate Headquarters
6390 Greenwich Dr., Suite 225
San Diego, CA 92122 - USA
Tel (English): +1 619 797 1323
Tel (Español): +1 619 453 0914

For supported customer email
us at support@veryant.com

If you would like Veryant to
contact you to schedule a
technical product briefing,
email us at info@veryant.com

If you would like Veryant to
contact you for special quote
or sales assistance email us at
sales@veryant.com

European Headquarters
Via Pirandello, 29
29121 - Piacenza - Italy
Tel: +39 0523 490770
Fax: +39 0523 480784
emea@veryant.com

Contact Us

Veryant Newsletter Issue 13 2025

©2025 Veryant - All Rights Reserved

http://www.veryant.com/
mailto:support%40veryant.com?subject=
mailto:info%40veryant.com?subject=
mailto:sales%40veryant.com?subject=
mailto:emea%40veryant.com?subject=
https://www.linkedin.com/company/veryant-llc
https://www.facebook.com/veryantCOBOL/
https://www.youtube.com/channel/UCdB0CZahezDc87F7UIvTXAA

